7 resultados para Sorption e preconcentration
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
2-Aminothiazole covalently attached to a silica gel surface was prepared in order to obtain an adsorbent for Hg(II) ions having the following characteristics: good sorption capacity, chemical stability under conditions of use, and, especially, high selectivity. The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2-aminothiazole (SIAMT-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to + 0.6 V versus Ag/AgCl (0.02 mol L-1 KNO3; V = 20 mV s(-1)) show two peaks one at about 0.1 V and other at 0.205 V. The anodic wave peak at 0.205 V is well defined and does not change during the cycles and it was therefore further investigated for analytical purposes using differential pulse anodic stripping voltammetry in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n = 6) of 0.02 and 0.20 mg L-1 Hg(II) was 4.1 and 3.5% (relative standard deviation), respectively. The detection limit was estimated as 0.10 mu g L-1 mercury(II) by means of 3:1 current-to-noise ratio in connection with the optimization of the various parameters involved and using the highest-possible analyser sensitivity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports an investigation on the effect of thermal activation of kaolinite. It is well known that during calcinations (400-650 degrees C), kaolinite loses the OH lattice water and is transformed into metakaolinite or amorphous material. Arsenic is trace element that is toxic to animals including humans. The adsorption of arsenic on kaolinite was investigated at varying pH and thermal pretreatment. Calcination of sample is carried out at 650 degrees C for 3 h. The decomposition of kaolinite is recorded using methods of thermal analysis. The resultant product is identified by XRD. Laboratory experiments were conducted examining the effect of arsenic by thermally modified kaolinite. The Langmuir isotherm was used to describe arsenite and arsenate sorption by the calcined kaolinite. The equilibrium parameters used were based on experimental data obtained for the dynamic adsorption process of arsenic. Removal of arsenate using natural kaolinite was satisfactory, whereas arsenic was not removed by adsorption with thermally modified kaolinite. Moreover, the adsorption of arsenic by kaolinite and metakaolinite decreases with increasing pH.
Resumo:
Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physicochemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 +/- 12 nm, polydispersion of 0.518, zeta potential of -22.8 +/- 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles. was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Agrochemicals constitute the class of products most commonly found in water resources. Their high level of concentration is due to the fact that less than 0.1% of pesticides applied to crops reach their target. The present work aims to study the sorption of clomazone herbicide (associated or not with nanoparticles). The sorption tests, performed with the 2(4) factorial design, showed that the form of herbicide is the main factor for sorption of clomazone. The application of nanoparticles as delivery system for agrochemicals is a pressing area of study and can contribute for decrease in effects of clomazone in the environment.
Resumo:
The sorption of four endocrine disruptors, bisphenol A (BPA), estrone (E1), 17 beta-estradiol (E2), and 17 alpha-ethinylestradiol (EE2) in tropical sediment samples was studied in batch mode under different conditions of pH, time, and sediment amount. Data obtained from sorption experiments using the endocrine disruptors (EDs) and sediments containing different amounts of organic matter showed that there was a greater interaction between the EDs and organic matter (OM) present in the sediment, particularly at lower pH values. The pseudosecond order kinetics model successfully explained the interaction between the EDs and the sediment samples. The theoretical and experimentally obtained q (e) values were similar, and k values were smaller for higher SOM contents. The k (F) values, obtained from the Freundlich isotherms, varied in the ranges 4.2-7.4 x 10(-2) (higher OM sediment sample, S(2)) and 1.7 x 10(-3)-3.1 x 10(-2) (lower OM sediment sample, S(1)), the latter case indicating an interaction with the sediment that increased in the order: EE2 > > E2 > E1 > BPA. These results demonstrate that the availability of endocrine disruptors may be directly related to the presence of organic material in sediment samples. Studies of this kind provide an important means of understanding the mobility, transport, and/or reactivity of this type of emergent contaminant in aquatic systems.
Resumo:
The toxicity of herbicides used in agriculture is influenced by their chemical stability, solubility, bioavailability, photodecomposition, and soil sorption. Possible solutions designed to minimize toxicity include the development of carrier systems able to modify the properties of the compounds and allow their controlled release. Polymeric poly(epsilon-caprolactone) (PCL) nanocapsules containing three triazine herbicides (ametryn, atrazine, and simazine) were prepared and characterized in order to assess their suitability as controlled release systems that could reduce environmental impacts. The association efficiencies of the herbicides in the nanocapsules were better than 84%. Assessment of stability (considering particle diameter, zeta potential, polydispersity, and pH) was conducted over a period of 270 days, and the particles were found to be stable in solution. In vitro release kinetics experiments revealed controlled release of the herbicides from the nanocapsules, governed mainly by relaxation of the polymer chains. Microscopy analyses showed that the nanocapsules were spherical, dense, and without aggregates. In the infrared spectra of the PCL nanocapsules containing herbicides, there were no bands related to the herbicides, indicating that interactions between the compounds had occurred. Genotoxicity tests showed that formulations of nanocapsules containing the herbicides were less toxic than the free herbicides. The results indicate that the use of PCL nanocapsules is a promising technique that could improve the behavior of herbicides in environmental systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A preconcentration method based on the use of Saccharomyces cerevisiae as sorbent material is proposed for the determination of Cd(II) in river water. The solid phase extraction was performed in batch mode and the determination of the analyte in the solid phase was easily carried out by introducing a slurry of the yeast (0.0625 g / 2.5 mL) directly into the ICP OES. A limit of detection of 0.11 µg L-1 and a sample throughput in the range of 4 - 54 sample h-1 were obtained. Determinations of cadmium in a certified sample and in real river water samples were in excellent agreement with the expected values.