2 resultados para Selective harvesting

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of size-grading of juveniles prior to stocking, as well as selective harvesting, on the population structure of pond-raised Macrobrachium amazonicum was studied. A randomized-complete-blocks design with 4 treatments and 3 replicates was used. The treatments were: upper size-graded juveniles, lower size-graded juveniles, ungraded juveniles (traditional), and ungraded juveniles with selective harvesting. Twelve 0.01 ha earthen ponds were stocked at 40 juveniles m(-2), according to the relevant treatment. Every three weeks, random samples from each pond were obtained for biometry, and after 3.5 months, the ponds were drained and completely harvested. Animals were then counted, weighed, and sexed; males were sorted as Translucent Claw (TC), Cinnamon Claw (CC), Green Claw 1 (GC1), and Green Claw 2 (GC2), and females as Virgin (VF), Berried (BE), and Open (OF). The prawns developed rapidly in the ponds. attaining maturity and differentiating into male morphotypes after about 2 months in all treatments. The fast-growing juveniles (upper grading fraction) mostly did not constitute the dominant males (CC] and GC2) in the adult population. Population development was slower in ponds stocked with Lower prawns, whereas selective harvesting increased the frequency of GC1 and reduced the final mean weight of GC2 males. The proportion of males increased throughout the culture period, but was generally not affected by the stocking or harvesting strategies. Grading juveniles and selective harvesting slightly altered the population dynamics and structure, although the general population development showed similar patterns in ponds stocked with upper, lower, and ungraded juveniles, or selectively harvested. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We evaluated the water characteristics and particle sedimentation in Macrobrachium amazonicum (Heller 1862) grow-out ponds supplied with a high inflow of nutrient-rich water. Prawns were subject to different stocking and harvesting strategies: upper-graded juveniles, lower-graded juveniles, non-graded juveniles + selective harvesting and traditional farming (non-grading juveniles and total harvest only). Dissolved oxygen, afternoon N-ammonia and N-nitrate and soluble orthophosphate were lower in the ponds in comparison with inflow water through the rearing cycle. Ponds stocked with the upper population fraction of graded prawns showed higher turbidity, total suspended solids and total Kjeldahl nitrogen than the remaining treatments. An increase in the chemical oxygen demand:biochemical oxygen demand ratio from inlet (4.9) to pond (7.1-8.0) waters indicated a non-readily biodegradable fraction enhancement in ponds. The sedimentation mean rate ranged from 0.08 to 0.16 mm day(-1) and sediment contained >80% of organic matter. The major factors affecting pond ecosystem dynamic were the organic load (due to primary production and feed addition) and bioturbation caused by stocking larger animals. Data suggest that M. amazonicum grow-out in ponds subjected to a high inflow of nutrient-rich water produce changes in the water properties, huge accumulation of organic sediment at the pond bottom and non-readily biodegradable material in the water column. However, the water quality remains suitable for aquaculture purposes. Therefore, nutrient-rich waters, when available, may represent a source of unpaid nutrients, which may be incorporated into economically valued biomass if managed properly.