3 resultados para Risk areas

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water regimes in the Brazilian Cerrados are sensitive to climatological disturbances and human intervention. The risk that critical water-table levels are exceeded over long periods of time can be estimated by applying stochastic methods in modeling the dynamic relationship between water levels and driving forces such as precipitation and evapotranspiration. In this study, a transfer function-noise model, the so called PIRFICT-model, is applied to estimate the dynamic relationship between water-table depth and precipitation surplus/deficit in a watershed with a groundwater monitoring scheme in the Brazilian Cerrados. Critical limits were defined for a period in the Cerrados agricultural calendar, the end of the rainy season, when extremely shallow levels (< 0.5-m depth) can pose a risk to plant health and machinery before harvesting. By simulating time-series models, the risk of exceeding critical thresholds during a continuous period of time (e.g. 10 days) is described by probability levels. These simulated probabilities were interpolated spatially using universal kriging, incorporating information related to the drainage basin from a digital elevation model. The resulting map reduced model uncertainty. Three areas were defined as presenting potential risk at the end of the rainy season. These areas deserve attention with respect to water-management and land-use planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to estimate the spatial distribution of work accident risk in the informal work market in the urban zone of an industrialized city in southeast Brazil and to examine concomitant effects of age, gender, and type of occupation after controlling for spatial risk variation. The basic methodology adopted was that of a population-based case-control study with particular interest focused on the spatial location of work. Cases were all casual workers in the city suffering work accidents during a one-year period; controls were selected from the source population of casual laborers by systematic random sampling of urban homes. The spatial distribution of work accidents was estimated via a semiparametric generalized additive model with a nonparametric bidimensional spline of the geographical coordinates of cases and controls as the nonlinear spatial component, and including age, gender, and occupation as linear predictive variables in the parametric component. We analyzed 1,918 cases and 2,245 controls between 1/11/2003 and 31/10/2004 in Piracicaba, Brazil. Areas of significantly high and low accident risk were identified in relation to mean risk in the study region (p < 0.01). Work accident risk for informal workers varied significantly in the study area. Significant age, gender, and occupational group effects on accident risk were identified after correcting for this spatial variation. A good understanding of high-risk groups and high-risk regions underpins the formulation of hypotheses concerning accident causality and the development of effective public accident prevention policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho utilizou métodos multivariados e matemáticos para integrar dados químicos e ecotoxicológicos obtidos para o Sistema Estuarino de Santos e para a região próxima à zona de lançamento do emissário submarino de Santos, com a finalidade de estabelecer com maior exatidão os riscos ambientais, e assim identificar áreas prioritárias e orientar programas de controle e políticas públicas. Para ambos os conjuntos de dados, as violações de valores numéricos de qualidade de sedimento tenderam a estar associadas com a ocorrência de toxicidade. Para o estuário, essa tendência foi corroborada pelas correlações entre a toxicidade e as concentrações de HPAs e Cu, enquanto para a região do emissário, pela correlação entre toxicidade e conteúdo de mercúrio no sedimento. Valores normalizados em relação às medias foram calculados para cada amostra, permitindo classificá-las de acordo com a toxicidade e a contaminação. As análises de agrupamento confirmaram os resultados das classificações. Para os dados de sistema estuarino, houve a separação das amostras em três categorias: as estações SSV-2, SSV-3 e SSV-4 encontram-se sob maior risco, seguidas da estação SSV-6. As estações SSV-1 e SSV-5 demonstraram melhores condições. Já em relação ao emissário, as amostras 1 e 2 apresentaram melhores condições, enquanto a estação 5 pareceu apresentar um maior risco, seguida das estações 3 e 4 que tiveram apenas alguns indícios de alteração.