4 resultados para Pachygrapsus Iransversus
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
Settlement rate may not reflect larval supply to coastal waters in different marine invertebrates and demersal fishes. The importance of near-shore oceanography and behaviour of late larval stages may be underestimated. The present study conducted neustonic sampling over station grids and along full-length transects at two embayments in south-eastern Brazil to (1) compare diurnal and nocturnal occurrence of most frequent decapod stages to assess their vertical movements, (2) describe the formation of larval patches and (3) measure competence of crab megalopae according to their distance to recruitment grounds. Several shrimp species apparently undergo a diel vertical migration, swimming crab megalopae showed no vertical movements and megalopae of the intertidal crab Pachygrapsus transversus revealed a reversed vertical migration. During the day, crab megalopae aggregated in convergence zones just below surface slicks. These larvae consisted of advanced, pre-moult stages, at both mid-bay and near-shore patches. Competence, measured as the time to metamorphosis in captivity, was similar between larval patches within each taxon. Yet, subtidal portunids moulted faster to juveniles than intertidal grapsids, possibly because they were closer to settlement grounds. Megalopae of Pachygrapsus from benthic collectors moulted faster than those from bay areas. These results suggest that alternative vertical migration patterns of late megalopae favour onshore transport, and actual competence takes place very close to suitable substrates, where larvae may remain for days before settlement. Lack of correlation between larval supply and settlement for Pachygrapsus suggests that biological processes, besides onshore transport, may play an important role in determining settlement success of coastal crabs.
Resumo:
Available information on the larval release rhythms of brachyurans is biased to temperate estuarine species and outcomes resulting from some sort of artificial manipulation of ovigerous females. In this study we applied field methods to describe the larval release rhythms of an assemblage of tropical rocky shore crabs. Sampling the broods of ovigerous females of Pachygrapsus transversus at two different shores indicated a spatially consistent semilunar pattern, with larval release maxima around the full and new moon. Yet, synchronism between populations varied considerably, with the pattern obtained at the site exposed to a lower wave action far more apparent. Breeding cohorts at one of the sampled shores apparently belonged to actual age groups composing the ovigerous population. The data suggest that these breeding groups release their larvae in alternate syzygy periods, responding to a lunar cycle instead of the semilunar pattern observed for the whole population. For the description of shorter-term rhythms, temporal series at hour intervals were obtained by sampling the plankton and confinement boxes where ovigerous females were held. Unexpectedly, diurnal release activity prevailed over nocturnal hatching. Yet, only grapsids living higher on the shore exhibited strong preferences over the diel cycle, with P. transversus releasing their larvae during the day and Geograpsus lividus during the night. The pea crab Dissodactylus crinitichelis, the spider crab Epialtus brasiliensis and a suite of xanthoids undertook considerable releasing activity in both periods. Apart from the commensal pea crab D. crinitichelis, all other taxa revealed tide-related rhythms of larval release, with average estimates of the time of maximum hatching always around the time of high tides; usually during the flooding and slack, rather than the ebbing tide. Data obtained for P. transversus females held in confinement boxes indicated that early larval release is mostly due to nocturnal hatching, while zoeal release in diurnal groups took place at the time of high tide. Since nocturnal high tides at the study area occurred late, sometimes close to dusk, early release would allow more time for offshore transport of larvae when the action of potential predators is reduced.
Resumo:
Benthic marine invertebrates may form metapopulations connected via propagule dispersal. Conservation efforts often target potential source coastlines to indirectly benefit areas depending on allochthonous offspring production. Besides population density, adult size structure, sex ratio, brooding frequency and the proportion of breeding individuals may significantly influence the reproductive output of benthic populations, but these effects have seldom been tested. We used rocky shore crabs to assess the spatial variability of such parameters at relevant scales for conservation purposes and to test their consistency over 2 consecutive years; we then used the data to address whether bottom-up processes or biological interactions might explain the patterns observed. We decomposed egg production rates into their components for the 2 most abundant brachyuran species inhabiting the intertidal rocky habitat. Adult density and brooding frequency varied consistently among shores for both species and largely explained the overall spatial trends of egg production. Temporally consistent patterns also included among-shore differences in the size of ovigerous females of the grapsid Pachygrapsus transversus and between-bay differences in the fecundity of the spider crab Epialtus brasiliensis. Sex ratio was remarkably constant in both. We found no positive or negative correlations between adult density and brooding frequency to support either the existence of a component Allee effect (lack of mate encounters) or an effect of intra-specific competition. Likewise, shore-specific potential growth in P. transversus does not negatively correlate with frequency of ovigerous individuals, as would be expected under a critical balance between these 2 processes. The patterns observed suggest that bottom-up drivers may best explain spatial trends in the reproductive output of these species.
Resumo:
Behaviours related to foraging and feeding in predator-prey systems are fundamental to our understanding of food webs. From the perspective of a predator, the selection of prey size depends upon a number of factors including prey vulnerability, prey size, and the predator's motivation to eat. Thus, feeding motivation and prey visual cues are supposed to influence predator decisions and it is predicted that prey selection by visual cues is modulated by the predator's stomach fullness prior to attacking a prey. This study was conducted using an animal model from the rocky shores ecosystem, a predatory fish, the frillfin goby Bathygobius soporator, and a benthic prey, the mottled shore crab Pachygrapsus transversus. Our results demonstrate that frillfin gables are capable of visually evaluating prey size and that the size evaluation process is modulated by the level of stomach fullness. Predators with an empty stomach (0% fullness) attacked prey that was larger than the predicted optimal size. Partially satiated predators (50% stomach fullness) selected prey close to the optimal size, while fully satiated predators (100% stomach fullness) showed no preference for size. This finding indicates an integrative response of the predator that depends on the input of both internal and external sensory information when choosing prey. Predator perceptions of visual cues (prey size) and stomach fullness modulate foraging decisions. As a result, a flexible feeding behaviour emerges, evidencing a clearly adaptive response in line with optimal foraging theory predictions. (C) 2012 Elsevier GmbH. All rights reserved.