1 resultado para Neural networks and clustering
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (14)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (12)
- Aston University Research Archive (86)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (27)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (111)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (7)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (24)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (9)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (17)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (6)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (10)
- Nottingham eTheses (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (116)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (14)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (19)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (42)
- Universidade do Minho (4)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (45)
- Université de Montréal (1)
- Université de Montréal, Canada (7)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (44)
- University of Southampton, United Kingdom (5)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.