5 resultados para Mercury sorption

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2-Aminothiazole covalently attached to a silica gel surface was prepared in order to obtain an adsorbent for Hg(II) ions having the following characteristics: good sorption capacity, chemical stability under conditions of use, and, especially, high selectivity. The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2-aminothiazole (SIAMT-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to + 0.6 V versus Ag/AgCl (0.02 mol L-1 KNO3; V = 20 mV s(-1)) show two peaks one at about 0.1 V and other at 0.205 V. The anodic wave peak at 0.205 V is well defined and does not change during the cycles and it was therefore further investigated for analytical purposes using differential pulse anodic stripping voltammetry in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n = 6) of 0.02 and 0.20 mg L-1 Hg(II) was 4.1 and 3.5% (relative standard deviation), respectively. The detection limit was estimated as 0.10 mu g L-1 mercury(II) by means of 3:1 current-to-noise ratio in connection with the optimization of the various parameters involved and using the highest-possible analyser sensitivity. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an investigation on the effect of thermal activation of kaolinite. It is well known that during calcinations (400-650 degrees C), kaolinite loses the OH lattice water and is transformed into metakaolinite or amorphous material. Arsenic is trace element that is toxic to animals including humans. The adsorption of arsenic on kaolinite was investigated at varying pH and thermal pretreatment. Calcination of sample is carried out at 650 degrees C for 3 h. The decomposition of kaolinite is recorded using methods of thermal analysis. The resultant product is identified by XRD. Laboratory experiments were conducted examining the effect of arsenic by thermally modified kaolinite. The Langmuir isotherm was used to describe arsenite and arsenate sorption by the calcined kaolinite. The equilibrium parameters used were based on experimental data obtained for the dynamic adsorption process of arsenic. Removal of arsenate using natural kaolinite was satisfactory, whereas arsenic was not removed by adsorption with thermally modified kaolinite. Moreover, the adsorption of arsenic by kaolinite and metakaolinite decreases with increasing pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrochemicals are amongst the contaminants most widely encountered in surface and subterranean hydrological systems. They comprise a variety of molecules, with properties that confer differing degrees of persistence and mobility in the environment, as well as different toxic, carcinogenic, mutagenic and teratogenic potentials, which can affect non-target organisms including man. In this work, alginate/chitosan nanoparticles were prepared as a carrier system for the herbicide paraquat. The preparation and physicochemical characterization of the nanoparticles was followed by evaluation of zeta potential, pH, size and polydispersion. The techniques employed included transmission electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. The formulation presented a size distribution of 635 +/- 12 nm, polydispersion of 0.518, zeta potential of -22.8 +/- 2.3 mV and association efficiency of 74.2%. There were significant differences between the release profiles of free paraquat and the herbicide associated with the alginate/chitosan nanoparticles. Tests showed that soil sorption of paraquat, either free or associated with the nanoparticles. was dependent on the quantity of organic matter present. The results presented in this work show that association of paraquat with alginate/chitosan nanoparticles alters the release profile of the herbicide, as well as its interaction with the soil, indicating that this system could be an effective means of reducing negative impacts caused by paraquat. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The garimpo gold mining activity has released about 2.500 tons of mercury in the Brazilian Amazonian environment in the 1980-1995 period. The northern region of Mato Grosso State, an important gold mining and trading area during the Arnazonian gold rush is now at a turning point regarding its economic future. Nowadays, the activities related to gold mining have only a low relevance on its economy. Thus, the local communities are looking for economic alternatives for the development of the region. Cooperative fish farming is one of such alternatives. However, some projects are directly implemented on areas degraded by the former garimpo activity and the mercury left behind still poses risks, especially by its potential accumulation in fish. The objective of the present study was to evaluate the levels of mercury contamination in two fish farming areas, Paranaita and Alta Floresta, with and without records of past gold-washing activity, respectively. Data such as mercury concentration in fish of different trophic level, size, and weight as well as the water physical and chemical parameters were measured and considered. These preliminary data have shown no significant difference between these two fish fanning areas, relatively to mercury levels in fish. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic organisms are considered excellent biomarkers of mercury (Hg) occurrence in the environment. Selenium (Se) acts in antagonism to this metal, stimulating its elimination, and reducing its toxicity. In this paper, tilapia (Oreochromis niloticus) were chronically acclimated in sub-lethal Hg2+, Hg2+ + Se4+ and Hg2+ + Se6+ concentrations. Distribution and bioaccumulation of both elements were evaluated in fish tissues. The kidney was the main target of the Hg and Se uptake, and the presence of Hg induced the Se hepatic elimination. The Hg bioaccumulation in the gill, spleen and heart were higher in the presence of Se6+ than in the presence of Se4+.