4 resultados para Inclusion complexes
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
Objectives To investigate the molecular interaction between beta-cyclodextrin (beta CD) or hydroxypropyl-beta-cyclodextrin (HP beta CD) and riboflavin (RF), and to test the anticancer potential of these formulations. Methods The physicochemical characterization of the association between RF and CDs was performed by UV-vis absorption, fluorescence, differential scanning calorimetry and NMR techniques. Molecular dynamics simulation was used to shed light on the mechanism of interaction of RF and CDs. Additionally, in-vitro cell culture tests were performed to evaluate the cytotoxicity of the RFCD complexes against prostate cancer cells. Key findings Neither beta CD nor HP beta CD led to substantial changes in the physicochemical properties of RF (with the exception of solubility). Additionally, rotating frame Overhauser effect spectroscopy experiments detected no spatial correlations between hydrogens from the internal cavity of CDs and RF, while molecular dynamics simulations revealed out-of-ring RFCD interactions. Notwithstanding, both RF beta CD and RFHP beta CD complexes were cytotoxic to PC3 prostate cancer cells. Conclusions The interaction between RF and either beta CD or HP beta CD, at low concentrations, seems to be made through hydrogen bonding between the flavonoid and the external rim of both CDs. Regardless of the mechanism of complexation, our findings indicate that RFCD complexes significantly increase RF solubility and potentiate its antitumour effect.
Resumo:
Schistosomiasis is still an endemic disease in many regions, with 250 million people infected with Schistosoma and about 500,000 deaths per year. Praziquantel (PZQ) is the drug of choice for schistosomiasis treatment, however it is classified as Class II in the Biopharmaceutics Classification System, as its low solubility hinders its performance in biological systems. The use of cyclodextrins is a useful tool to increase the solubility and bioavailability of drugs. The aim of this work was to prepare an inclusion compound of PZQ and methyl-beta-cyclodextrin (MeCD), perform its physico-chemical characterization, and explore its in vitro cytotoxicity. SEM showed a change of the morphological characteristics of PZQ:MeCD crystals, and IR data supported this finding, with changes after interaction with MeCD including effects on the C-H of the aromatic ring, observed at 758 cm(-1). Differential scanning calorimetry measurements revealed that complexation occurred in a 1:1 molar ratio, as evidenced by the lack of a PZQ transition temperature after inclusion into the MeCD cavity. In solution, the PZQ UV spectrum profile in the presence of MeCD was comparable to the PZQ spectrum in a hydrophobic solvent. Phase solubility diagrams showed that there was a 5.5-fold increase in PZQ solubility, and were indicative of a type A(L) isotherm, that was used to determine an association constant (K(a)) of 140.8 M(-1). No cytotoxicity of the PZQ:MeCD inclusion compound was observed in tests using 3T3 cells. The results suggest that the association of PZQ with MeCD could be a good alternative for the treatment of schistosomiasis.
Resumo:
The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.