4 resultados para Gill Parasites
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.
Resumo:
The aim of this study was to determine the toxicity of the aqueous extract of neem leaves, a product extensively used in fish-farms as alternative for the control of fish parasites and fish fry predators, for the neotropical fish Prochilodus lineatus. The 24 It LC(50) of neem leaf extract for juveniles P lineatus was estimated as 4.8 g L(-1); the fish were then exposed for 24 h to 2.5, 5.0 and 7.5 g L(-1) or only clean water (control). Plasma glucose levels were higher in fish exposed to 2.5 g L(-1) and 5.0 g L(-1) neem extract, relative to control, indicating a typical stress response. Neem extract did not interfere with the osmoregulating capacity of the fish, as their plasma sodium, chloride, total protein and osmolarity did not change. The presence of the biopesticide interfered with the antioxidant defense system of P. lineatus, as there was a decrease in liver catalase activity at all neem concentrations and the detoxifying enzyme glutathione-S-transferase was activated in fish exposed to 5.0 g L(-1). Fish exposed to all neem extract concentrations exhibited damaged gill and kidney tissue. These results indicate that although neem extract is less toxic to P. lineatus than other synthetic insecticides used in fish-farming it does cause functional and morphological changes in this fish species. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Few studies have been performed with parasites of marine and estuarine fish in southern Brazil. In the present study, unpublished results show the ways of parasitism of juvenile mullet by parasites. The toxicity of formaldehyde and the effectiveness of this chemotherapy in controlling parasites in reared juvenile mullet Mugil liza were also studied. Juvenile mullets (1 +/- 0.26 g; 4.1 +/- 0.4 cm) were exposed to different concentrations of 37% formaldehyde: control group and five formaldehyde concentrations which were tested: T1 (13.5), T2 (21.6), T3 (40.5), T4 (81) and T5 (135) mg L-1 with 8 fish per repetition in triplicate. To verify the drug effectiveness in parasitic control, juvenile mullets were exposed to 1 h prophylactic bath of 37% formaldehyde with a control group and five formaldehyde concentrations: T1 (67.5), T2 (135), T3 (270), T4 (405) and T5 (540) mg L-1, 8 fish per repetition in triplicate. Ligophorus cf. uruguayensis (Monogenoidea: Ancyrocephalidae) and Solostamenides cf. platyorchis (Monogenoidea: Microcotylidae) were identified in the gills. Digenea and Nematoda were observed in the intestines. This is the first occurrence of S. cf. platyorchis in Brazil. During the toxicity test, the LC50-96 h was estimated at 20.77 mg L-1 of formaldehyde. During the 1 h formaldehyde prophylactic bath, all parasites were eliminated in formaldehyde concentrations between 135 and 540 mg L-1. High survival rate was observed in all treatments. Values of prevalence and intensity of infestation observed in this study showed the potential damage caused by Monogenoidea to mullet. Formaldehyde baths with 135 mg L-1 are recommended to control Monogenoidea in mullet and the safe limits for formaldehyde use were presented. Besides, the endoparasites were tolerant to formaldehyde exposure. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Investigou-se a relação entre as características da água e a infestação de protozoários parasitos, Icthyophthirius multifiliis e Trichodina sp., em peixe espada, Xiphophorus helleri e em plati, Xiphophorus maculatus, coletados em uma piscicultura de peixes ornamentais no Estado de São Paulo, Brasil. Os peixes foram coletados mensalmente, durante um ano, dos viveiros e das caixas de estocagem. A prevalência da infestação nos peixes das caixas e dos viveiros foram, respectivamente, 34,2% e 22,5% para I. multifiliis e 13% e 54% para Trichodina sp. A elevada condutividade elétrica e o pH da água reduziram a infestação por I. multifiliis. A baixa concentração de oxigênio resultou em aumento na infestação por Trichodina sp. O uso do sal, para aumentar a condutividade elétrica da água, consistiu em um método de controle de I. multifiliis. A redução do oxigênio dissolvido e a adição de fertilizante orgânico favoreceram a reprodução de Trichodina sp.