2 resultados para Geoestatística multivariada
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
O objetivo deste trabalho foi avaliar cenários de níveis freáticos extremos, em bacia hidrográfica, por meio de métodos de análise espacial de dados geográficos. Avaliou-se a dinâmica espaço‑temporal dos recursos hídricos subterrâneos em área de afloramento do Sistema Aquífero Guarani. As alturas do lençol freático foram estimadas por meio do monitoramento de níveis em 23 piezômetros e da modelagem das séries temporais disponíveis de abril de 2004 a abril de 2011. Para a geração de cenários espaciais, foram utilizadas técnicas geoestatísticas que incorporaram informações auxiliares relativas a padrões geomorfológicos da bacia, por meio de modelo digital de terreno. Esse procedimento melhorou as estimativas, em razão da alta correlação entre altura do lençol e elevação, e agregou sentido físico às predições. Os cenários apresentaram diferenças quanto aos níveis considerados extremos - muito profundos ou muito superficiais - e podem subsidiar o planejamento, o uso eficiente da água e a gestão sustentável dos recursos hídricos na bacia.
Resumo:
As condições de ambiente térmico e aéreo, no interior de instalações para animais, alteram-se durante o dia, devido à influência do ambiente externo. Para que análises estatísticas e geoestatísticas sejam representativas, uma grande quantidade de pontos distribuídos espacialmente na área da instalação deve ser monitorada. Este trabalho propõe que a variação no tempo das variáveis ambientais de interesse para a produção animal, monitoradas no interior de instalações para animais, pode ser modelada com precisão a partir de registros discretos no tempo. O objetivo deste trabalho foi desenvolver um método numérico para corrigir as variações temporais dessas variáveis ambientais, transformando os dados para que tais observações independam do tempo gasto durante a aferição. O método proposto aproximou os valores registrados com retardos de tempo aos esperados no exato momento de interesse, caso os dados fossem medidos simultaneamente neste momento em todos os pontos distribuídos espacialmente. O modelo de correção numérica para variáveis ambientais foi validado para o parâmetro ambiental temperatura do ar, sendo que os valores corrigidos pelo método não diferiram pelo teste Tukey, a 5% de probabilidade dos valores reais registrados por meio de dataloggers.