2 resultados para Formulation de projets

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports a physicochemical stability evaluation of a previously reported liposomal prilocaine (PLC(LUV)) formulation (Cereda el al. J. Pharm. Pharmaceut. Sci. 7:235, 2004) before and after steam sterilization as well as its local toxicity evaluation. Prilocaine (PLC) was encapsulated into extruded unilamellar liposomes (LUVs) composed by egg phosphatidylcholine:cholesterol:alfa-tocopherol (4:3:0.07, mole %). Laser light-scattering analysis (p > 0.05) and thiobarbituric acid reaction (p > 0.05) were used to evaluate the liposomes physical (size) and chemical (oxidation) stability, respectively. The prilocaine chemical stability was followed by (1)H-nuclear magnetic resonance. These tests detected no differences on the physicochemical stability of PLC or PLCLUV, sterilized or not, up to 30 days after preparation (p > 0.05). Finally, the paw edema test and histological analysis of rat oral mucosa were used to assess the possible inflammatory effects of PLC(LUV). PLC(LUV) did not evoke rat paw edema (p > 0.05), and no significant differences were found in histological analysis, when compared to the control groups (p > 0.05). The present work shows that PLC(LUV) is stable for a 30-day period and did not induce significant inflammatory effects both in the paw edema test and in histological analysis, giving supporting evidence for its safely and possible clinical use in dentistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports an investigation of the pharmacological activity, cytotoxicity, and local effects of a liposomal formulation of the novel local anaesthetic ropivacaine (RVC) compared with its plain solution. RVC was encapsulated into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine, cholesterol and a-tocopherol (4:3:0.07, mole %). Particle size, partition coefficient determination and in-vitro release studies were used to characterize the encapsulation process. Cytotoxicity was evaluated by the tetrazolium reduction test using sciatic nerve Schwann cells in culture. Local anaesthetic activity was assessed by mouse sciatic and rat infraorbital nerve blockades. Histological analysis was performed to verify the myotoxic effects evoked by RVC formulations. Plain (RVCPLAIN) and liposomal RVC (RVCLUV) samples were tested at 0.125%, 0.25% and 0.5% concentrations. Vesicle size distribution showed liposomal populations of 370 and 130 nm (85 and 15%, respectively), without changes after RVC encapsulation. The partition coefficient value was 132 26 and in-vitro release assays revealed a decrease in RVC release rate (1.5 fold, P < 0.001) from liposomes. RVCLUV presented reduced cytotoxicity (P < 0.001) when compared with RVCPLAIN Treatment with RVCLUV increased the duration (P < 0.001) and intensity of the analgesic effects either on sciatic nerve blockade (1.4-1.6 fold) and infraorbital nerve blockade tests (1.5 fold), in relation to RVCPLAIN. Regarding histological analysis, no morphological tissue changes were detected in the area of injection and sparse inflammatory cells were observed in only one of the animals treated with RVCPLAIN or RVCLUV at 0.5%. Despite the differences between these preclinical studies and clinical conditions, we suggest RVCLUV as a potential new formulation, since RVC is a new and safe local anaesthetic agent.