3 resultados para EXCHANGE MOLECULAR-DYNAMICS

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report a 20-ns constant pressure molecular dynamics simulation of prilocaine (PLC), in amine-amide local anesthetic, in a hydrated liquid crystal bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine. The partition of PLC induces the lateral expansion of the bilayer and a concomitant contraction in its thickness. PLC molecules are preferentially found in the hydrophobic acyl chains region, with a maximum probability at similar to 12 angstrom from the center of the bilayer (between the C(4) and C(5) methylene groups). A decrease in the acyl chain segmental order parameter, vertical bar S-CD vertical bar, compared to neat bilayers, is found, in good agreement with experimental H-2-NMR studies. The decrease in vertical bar S-CD vertical bar induced by PLC is attributed to a larger accessible volume per lipid in the acyl chain region. (C) 2008 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report a 20-ns constant pressure molecular dynamics simulation of the uncharged form of two amino-amide local anesthetics (LA). etidocaine and prilocaine, present at 1:3 LA:lipid, molar ratio inside the membrane, in the hydrated liquid crystal bilayer phase of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). Both LAs induced lateral expansion and a concomitant contraction in the bilayer thickness. A decrease in the acyl chain segment order parameter, -S(CD), compared to neat bilayers, was also observed. Besides, both LA molecules got preferentially located in the hydrophobic acyl chains region, with a maximum probability at similar to 12 and similar to 10 angstrom from the center of the bilayer for prilocaine and etidocaine, respectively. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.