3 resultados para CIRCULATORY AND RESPIRATORY PHYSIOLOGY
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
The respiratory metabolism of immature forms (eggs, larvae, prepupae and pupae) of Camponotus rufipes (Hymenoptera: Formicidae) was studied at 25 degrees C, using a Warburg respirometer. Mean respiratory rates (mu l O gamma mg(-1) live weight.hr(-1)) for eggs, first instars, second instars, third instars, fourth instars, prepupae, and pupae were respectively: 2.53, 5.07, 1.23, 0.32, 0.22, 0.19 and 0.13. Adult workers with body mass between 20 and 30 mg had a mean respiratory rate of 0.43. The high respiratory rate in first instars probably reflects, besides the size influence, the metabolic costs of differentiation that occurs in this phase. (C) 1998 Published by Elsevier B.V.
Resumo:
We investigate extra- and intracellular osmoregulatory capability in two species of hololimnetic Caridea and Anomura: Macrobrachium brasiliense, a palaemonid shrimp, and Aegla franca, an aeglid anomuran, both restricted to continental waters. We also appraise the sharing of physiological characteristics by the hololimnetic Decapoda, and their origins and role in the conquest of fresh water. Both species survive salinity exposure well. While overall hyperosmoregulatory capability is weak in A. franca and moderate in M. brasiliense, both species strongly hyporegulate hemolymph [Cl-] but not osmolality. Muscle total free amino acids (FAA) increase slowly but markedly in response to the rapid rise in hemolymph osmolality consequent to hyperosmotic challenge: 3.5-fold in A. franca and 1.9-fold in M. brasiliense. Glycine, taurine, arginine, alanine and proline constitute a parts per thousand 85% of muscle FAA pools in fresh water; taurine, arginine, alanine each contribute a parts per thousand 22% in A. franca, while glycine predominates (70%) in M. brasiliense. These FAA also show the greatest increases on salinity challenge. Muscle FAA titers correlate strongly (R = 0.82) with hemolymph osmolalities across the main decapod sub/infraorders, revealing that marine species with high hemolymph osmolalities achieve isosmoticity of the intra- and extracellular fluids partly through elevated intracellular FAA concentrations; freshwater species show low hemolymph osmolalities and exhibit reduced intracellular FAA titers, consistent with isosmoticity at a far lower external osmolality. Given the decapod phylogeny adopted here and their multiple, independent invasions of fresh water, particularly by the Caridea and Anomura, our findings suggest that homoplastic strategies underlie osmotic and ionic homeostasis in the extant freshwater Decapoda.
Resumo:
This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus) fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus), to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS) only) at 0.1, 0.2, 0.5 and 1 mg/L). Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.