3 resultados para CATIONIC SURFACTANT
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The effects of the Linear Alkylbenzene Sulphonate (LAS) were evaluated on the mussel Perna perna (Linnaeus, 1758), using a cellular level biomarker. The Neutral Red Retention Time (NRRT) assay was used to estimate effects at cellular levels. Significant effects were observed for the NRRT assay, even in low concentrations. The effects at cellular level were progressive, suggesting that the organisms are not capable to recover of such increasing effects. Additionally, the results show that the levels of LAS observed for Brazilian coastal waters may chronically affect the biota.
Resumo:
The effects of the Linear Alkylbenzene Sulphonate (LAS) were evaluated on the mussel Perna perna, using physiological and genotoxic biomarkers. The Micronuclei (MN) assay was used to estimate effects at nuclear level, whereas the physiological effects were evaluated by measuring the oxygen consumption and ammonia excretion rates. Significant effects were observed for the MN assay and the ammonia excretion rate, even in low concentrations. The oxygen consumption was not affected in the tested concentrations. For MN and ammonia excretion, the animals exposed to intermediate concentrations were not affected, but responded to the higher concentrations, indicating the existence of compensatory mechanisms at physiological level. However, parallel to this study other authors indicate the presence of progressive effects at the cellular level, suggesting that the organisms are not capable to recover of such increasing effects. Additionally, the results show that the levels of LAS observed for Brazilian coastal waters may chronically affect the biota.