2 resultados para Beta-2

em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ropivacaine (RVC) is an enantiomerically pure local anesthetic (LA) largely used in surgical procedures, which presents physico-chemical and therapeutic properties similar to those of bupivacaine (BPV), but associated to less systemic toxicity This study focuses on the development and pharmacological evaluation of a RVC in 2-hydroxypropyl-beta-cyclodextrin (HP-P-CD) inclusion complex. Phase-solubility diagrams allowed the determination of the association constant between RVC and HP-beta-CD (9.46 M-1) and showed an increase on RVC solubility upon complexation. Release kinetics revealed a decrease on RVC release rate and reduced hemolytic effects after complexation. (onset at 3.7 mM and 11.2 mM for RVC and RVCHP-beta-CD, respectively) were observed. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray analysis (X-ray) showed the formation and the morphology of the complex. Nuclear magnetic resonance (NMR) and job-plot experiments afforded data regarding inclusion complex stoichiometry (1:1) and topology. Sciatic nerve blockade studies showed that RVCHP-beta-CD was able to reduce the latency without increasing the duration of motor blockade, but prolonging the duration and intensity of the sensory blockade (p < 0.001) induced by the LA in mice. These results identify the RVCHP-beta-CD complex as an effective novel approach to enhance the pharmacological effects of RVC, presenting it as a promising new anesthetic formulation. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.