2 resultados para Aqüífero Guarani
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.
Resumo:
O objetivo deste trabalho foi avaliar cenários de níveis freáticos extremos, em bacia hidrográfica, por meio de métodos de análise espacial de dados geográficos. Avaliou-se a dinâmica espaço‑temporal dos recursos hídricos subterrâneos em área de afloramento do Sistema Aquífero Guarani. As alturas do lençol freático foram estimadas por meio do monitoramento de níveis em 23 piezômetros e da modelagem das séries temporais disponíveis de abril de 2004 a abril de 2011. Para a geração de cenários espaciais, foram utilizadas técnicas geoestatísticas que incorporaram informações auxiliares relativas a padrões geomorfológicos da bacia, por meio de modelo digital de terreno. Esse procedimento melhorou as estimativas, em razão da alta correlação entre altura do lençol e elevação, e agregou sentido físico às predições. Os cenários apresentaram diferenças quanto aos níveis considerados extremos - muito profundos ou muito superficiais - e podem subsidiar o planejamento, o uso eficiente da água e a gestão sustentável dos recursos hídricos na bacia.