2 resultados para Ancestral
em Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP)
Resumo:
The transition from marine/brackish waters to freshwater habitats constitutes a severe osmotic and ionic challenge, and successful invasion has demanded the selection of morphological, physiological, biochemical and behavioral adaptations. We evaluated short-term (1 to 12 h exposure) and long-term (5 d acclimation), anisosmotic extracellular (osmolality, [Na(+), Cl(-)]) and long-term isosmotic intracellular osmoregulatory capability in Palaemon northropi, a neotropical intertidal shrimp. F northropi survives well and osmo- and ionoregulates strongly during short- and long-term exposure to 5-45 parts per thousand salinity, consistent with its rocky tide pool habitat subject to cyclic salinity fluctuations, Muscle total free amino acid (FAA) concentrations decreased by 63% in shrimp acclimated to 5%. salinity, revealing a role in hypoosmotic cell volume regulation; this decrease is mainly a consequence of diminished glycine, arginine and proline. Total FAA contributed 31% to muscle intracellular osmolality at 20 parts per thousand, an isosmotic salinity, and decreased to 13% after acclimation to 5 parts per thousand. Gill and nerve tissue FAA concentrations remained unaltered. These tissue-specific responses reflect efficient anisosmotic and anisoionic extracellular regulatory mechanisms, and reveal the dependence of muscle tissue on intracellular osmotic effectors. FAA concentration is higher in P. northropi than in diadromous and hololimnetic palaemonids, confirming muscle FAA concentration as a good parameter to evaluate the degree of adaptation to dilute media. The osmoregulatory capability of P. northropi may reflect the potential physiological capacity of ancestral marine palaemonids to penetrate into dilute media, and reveals the importance of evaluating osmoregulatory processes in endeavors to comprehend the invasion of dilute media by ancestral marine crustaceans.
Resumo:
Broad nosed caiman are ectotherm sauropsids that naturally experience long fasting intervals. We have studied the postprandial responses by measuring oxygen consumption using respirometry, the size changes of the duodenum, the distal small intestine, and the liver, using repeated non-invasive ultrasonography, and by investigating structural changes on the level of tissues and cells by using light- and electron microscopy. The caimans showed the same rapid and reversible changes of organ size and identical histological features, down to the ultrastructure level, as previously described for other ectothermic sauropsids. We found a configuration change of the mucosa epithelium from pseudostratified during fasting to single layered during digestion, in association with hypertrophy of enterocytes by loading them with lipid droplets. Similar patterns were also found for the hepatocytes of the liver. By placing the results of our study in comparative relationship and by utilizing the phylogenetic bracket of crocodiles, birds and squamates, we suggest that the observed features are plesiomorphic characters of sauropsids. By extending the comparison to anurans, we suggest that morphological and physiological adjustments to feeding and fasting described here may have been a character of early tetrapods. In conclusion, we suggest that the ability to tolerate long fasting intervals and then swallow a single large meal as described for many sit-an-wait foraging sauropsids is a functional feature that was already present in ancestral tetrapods.