2 resultados para within-household distribution

em Universidade do Algarve


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffuse reflectance and laser-induced techniques were used to study photochemical and photophysical processes of benzil adsorbed on two solid powdered supports, microcrystalline cellulose and beta-cyclodextrin. In both substrates, a distribution of ground-state benzil conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. Room temperature phosphorescence was observed in air-equilibrated samples in both cases. The decay times vary greatly and the largest lifetime was obtained for benzil/beta-cyclodextrin, showing that this host's cavity accommodates benzil well, enhancing its room temperature phosphorescence. Triplet - triplet absorption of benzil entrapped in cellulose was detected and benzil ketyl radical formation also occurred. With benzil included into beta-cyclodextrin, and following laser excitation, benzoyl radicals were detected on the millisecond timescale. Product analysis and identification of laser-irradiated benzil samples in the two hosts clearly showed that the main degradation photoproducts were benzoic acid and benzaldehyde. The main differences were a larger benzoic acid/benzaldehyde ratio in the case of cellulose and the formation of benzyl alcohol in this support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffuse reflectance and laser-induced techniques were used to access photochemical and photophysical processes of benzil in solid supports, namely p-tert-butylcalix[n]arenes with n = 4, 6, and 8. A comparative study was performed using these results and those obtained with another electronically inert support, silicalite, which is a hydrophobic zeolite. In the latter substrate, ground-state benzil has the two carbonyl groups in an s-trans planar conformation while in the calixarenes a distribution of conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. In all substrates, room-temperature phosphorescence was obtained in air-equilibrated samples. The decay times vary greatly and the largest lifetime was obtained for benzil/p-tert-butylcalix[6]arene, showing that this host cavity well accommodates benzil, enhancing its room-temperature phosphorescence. p-tert-Butylcalix[6] and [8]arene molecules provide larger hydrophobic cavities than silicalite, and inclusion complexes are formed with these hosts and benzil as guest; p-tert-butylcalix[4]arene does not include benzil. This probe is deposited outside the calix[41 cavity, in the form of microcrystals. Triplet-triplet absorption of benzil was detected in all cases and is predominant in the silicalite channel inclusion case. Benzil ketyl radical formation occurs with inclusion in calix[6]arene and calix[8]arene. In the three cases, benzoyl radical was detected at long times (in the millisecond time scale). Product analysis and identification clearly show that the main detected degradation photoproducts in all substrates are benzoyl radical derivatives. Calix[6] and [8]arenes are able to supply hydrogen atoms that allow also another reaction, the reduction to benzoin through benzil ketyl radical formation.