2 resultados para volatilization

em Universidade do Algarve


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissipation or triadimefon, as pure solid and in the Bayleton 5 commercial formulation, was studied under controlled and natural conditions. Volatilization and photodegradation were shown to be the main dissipation processes. The volatilization results can be described by an empirical model assuming exponential decay of the volatilization rate. The filler of the commercial formulation is determinant for the volatilization but has little effect on the photodegradation rates. The main photoproducts were identified and a reaction mechanism proposed. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissipation of triadimefon, {1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butanone}, was studied after its application to melon leaves, glass and paper, both in greenhouse and field conditions. The dissipation rate of triadimefon in its commercial formulation Bayleton 5 was found to be lower in greenhouse than field. The results for different samples in the same conditions show that the dissipation of triadimefon was found to be biphasic. This result can be accounted by a semi-empirical model which assumes an initial fast decline of the dissipation rate, attributed to an exponential decay of the volatilization rates, followed by a second phase where the dissipation is due to a first order degradation processes.The dissipation of triadimefon, {1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H- 1,2,4-triazol-1-yl)butan-one}, was studied after its application to melon leaves, glass and paper, both in greenhouse and field conditions. The dissipation rate of triadimefon in its commercial formulation Bayleton 5 was found to be lower in greenhouse than field. The results for different samples in the same conditions show that the dissipation of triadimefon was found to be biphasic. This result can be accounted by a semi-empirical model which assumes an initial fast decline of the dissipation rate, attributed to an exponential decay of the volatilization rates, followed by a second phase where the dissipation is due to a first order degradation processes.