3 resultados para dissipation

em Universidade do Algarve


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissipation or triadimefon, as pure solid and in the Bayleton 5 commercial formulation, was studied under controlled and natural conditions. Volatilization and photodegradation were shown to be the main dissipation processes. The volatilization results can be described by an empirical model assuming exponential decay of the volatilization rate. The filler of the commercial formulation is determinant for the volatilization but has little effect on the photodegradation rates. The main photoproducts were identified and a reaction mechanism proposed. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissipation of triadimefon, {1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butanone}, was studied after its application to melon leaves, glass and paper, both in greenhouse and field conditions. The dissipation rate of triadimefon in its commercial formulation Bayleton 5 was found to be lower in greenhouse than field. The results for different samples in the same conditions show that the dissipation of triadimefon was found to be biphasic. This result can be accounted by a semi-empirical model which assumes an initial fast decline of the dissipation rate, attributed to an exponential decay of the volatilization rates, followed by a second phase where the dissipation is due to a first order degradation processes.The dissipation of triadimefon, {1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H- 1,2,4-triazol-1-yl)butan-one}, was studied after its application to melon leaves, glass and paper, both in greenhouse and field conditions. The dissipation rate of triadimefon in its commercial formulation Bayleton 5 was found to be lower in greenhouse than field. The results for different samples in the same conditions show that the dissipation of triadimefon was found to be biphasic. This result can be accounted by a semi-empirical model which assumes an initial fast decline of the dissipation rate, attributed to an exponential decay of the volatilization rates, followed by a second phase where the dissipation is due to a first order degradation processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photochemistry of pesticides triadimefon and triadimenol was studied in aqueous solution and in methanol/water mixtures, in controlled and natural conditions. The photodegradation kinetics and product distribution are strongly dependent on the solvent and on the irradiation wavelength. The degradation rates are faster at 254 nm than at 313 nm. The kinetics is faster in water than methanol. Direct photoreaction is an important dissipation pathway of triadimefon in natural water systems while triadimenol is stable in these conditions. 1,2,4-Triazole and 4-chlorophenol are two of the major photodegradation products. The formation of the 4-chlorophenoxyl radical was detected for both pesticides in methanol and methanol/water mixtures. In methanol/water mixtures the reaction of both pesticides also occurs with 4-chlorophenolate formation, which increases with the water content. The photochemical studies of pesticides and other pollutants should be made in conditions as similar as possible to those observed in environmental systems. (C) 2003 Elsevier Science B.V. All rights reserved.