2 resultados para TITANIUM SILICALITE

em Universidade do Algarve


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemistry and photophysics of 4-chlorophenol (4-CP) were studied onto two model solid supports, silicalite and beta-cyclodextrin (beta-Cl)), using time resolved diffuse reflectance techniques and product degradation analysis. The results have shown that the photochemistry and photophysics of 4-CP are different from solution and depend on the solid. Ground state diffuse reflectance and time resolved luminescence demonstrated the inclusion of the probe in both substrates. 4-CP exhibits room temperature luminescence in both hosts, being structured and much more intense in beta-CD. The emission was assigned to phosphorescence of the inclusion complex. Transient absorption demonstrated the formation of the unsubstituted phenoxyl radical and of 4-chlorophenoxyl radical in beta-CD. In silicalite only the later was detected. The studies of the photodegradation products indicate that phenol is the main photoproduct in beta-CD. In silicalite the chromatographic analysis indicates the presence of products that involve the ring cleavage. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse reflectance and laser-induced techniques were used to access photochemical and photophysical processes of benzil in solid supports, namely p-tert-butylcalix[n]arenes with n = 4, 6, and 8. A comparative study was performed using these results and those obtained with another electronically inert support, silicalite, which is a hydrophobic zeolite. In the latter substrate, ground-state benzil has the two carbonyl groups in an s-trans planar conformation while in the calixarenes a distribution of conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. In all substrates, room-temperature phosphorescence was obtained in air-equilibrated samples. The decay times vary greatly and the largest lifetime was obtained for benzil/p-tert-butylcalix[6]arene, showing that this host cavity well accommodates benzil, enhancing its room-temperature phosphorescence. p-tert-Butylcalix[6] and [8]arene molecules provide larger hydrophobic cavities than silicalite, and inclusion complexes are formed with these hosts and benzil as guest; p-tert-butylcalix[4]arene does not include benzil. This probe is deposited outside the calix[41 cavity, in the form of microcrystals. Triplet-triplet absorption of benzil was detected in all cases and is predominant in the silicalite channel inclusion case. Benzil ketyl radical formation occurs with inclusion in calix[6]arene and calix[8]arene. In the three cases, benzoyl radical was detected at long times (in the millisecond time scale). Product analysis and identification clearly show that the main detected degradation photoproducts in all substrates are benzoyl radical derivatives. Calix[6] and [8]arenes are able to supply hydrogen atoms that allow also another reaction, the reduction to benzoin through benzil ketyl radical formation.