2 resultados para Pesticides

em Universidade do Algarve


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemistry of pesticides triadimenol and triadimefon was studied on cellulose and beta-cyclodextrin (beta-CD) in controlled and natural conditions, using diffuse reflectance techniques and chromatographic analysis. The photochemistry of triadimenol occurs from the chlorophenoxyl moiety, while the photodegradation of triadimefon also involves the carbonyl group. The formation of 4-chlorophenoxyl radical is one of the major reaction pathways for both pesticides and leads to 4-chlorophenol. Triadimenol also undergoes photooxidation and dechlorination, leading to triadimefon and dechlorinated triadimenol, respectively. The other main reaction process of triadimefon involves alpha-cleavage from the carbonyl group, leading to decarbonylated compounds. Triadimenol undergoes photodegradation at 254 nm but was found to be stable at 313 nm, while triadimefon degradates in both conditions. Both pesticides undergo photochemical decomposition under solar radiation, being the initial degradation of rate per unit area of triadimefon 1 order of magnitude higher than the observed for triadimenol in both supports. The degradation rates of the pesticides were somewhat lower in beta-CD than on cellulose. Photoproduct distribution of triadimenol and triadimefon is similar for the different irradiation conditions, indicating an intramolecular energy transfer from the chlorophenoxyl moiety to the carbonyl group in the latter pesticide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemistry of pesticides triadimefon and triadimenol was studied in aqueous solution and in methanol/water mixtures, in controlled and natural conditions. The photodegradation kinetics and product distribution are strongly dependent on the solvent and on the irradiation wavelength. The degradation rates are faster at 254 nm than at 313 nm. The kinetics is faster in water than methanol. Direct photoreaction is an important dissipation pathway of triadimefon in natural water systems while triadimenol is stable in these conditions. 1,2,4-Triazole and 4-chlorophenol are two of the major photodegradation products. The formation of the 4-chlorophenoxyl radical was detected for both pesticides in methanol and methanol/water mixtures. In methanol/water mixtures the reaction of both pesticides also occurs with 4-chlorophenolate formation, which increases with the water content. The photochemical studies of pesticides and other pollutants should be made in conditions as similar as possible to those observed in environmental systems. (C) 2003 Elsevier Science B.V. All rights reserved.