3 resultados para Induction plasma - modeling - chemical equilibrium - silicon nitride synthesis
em Universidade do Algarve
Resumo:
UV and visible photoconductivity and electrical features of undoped diamond thin films grown by microwave plasma-assisted chemical vapour deposition (MP-CVD) on silicon and copper substrates are studied. The results are correlated with morphology properties analysed by atomic force microscopy (AFM) and micro-Raman. The photoconductivity presents several bands from 1.8 to 3.8 eV that are dependent on the substrate used to grow the samples in spite of some common bands observed. The J-V curve tin DC) in samples grown on Si has a rectifier behaviour (Schottky emission) in opposition to the samples grown on Cu that have no rectification (SCLC conduction). With these results we can conclude that diamond based optoelectronic devices behaviour is controlled by two kinds of structural defects localized in microcrystal and in its boundaries. A general structure model for the optoelectronic behaviour is discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The electrical and photoconductive features of as-grown microwave-plasma-assisted chemical-vapour deposition (MPCVD) diamond films are studied in correlation with magnetic results obtained from electron paramagnetic resonance (EPR). Also, the morphology is analysed by atomic force microscopy (AFM) showing [111] crystals with a good uniformity of the deposit. The photoresponse as well the current-voltage features observed show an efficient photogeneration of carriers while the optoelectronic characteristics of the metal-diamond junction have an ideality factor of 1.6 together with a rectification ratio of about 10(4) at +/-2.5 V. The nature of the mechanisms responsible for the conduction is discussed. (C) 1998 Elsevier Science S.A.