4 resultados para FIELD-EFFECT TRANSISTORS

em Universidade do Algarve


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field effect devices have been formed in which the active layer is a thin film of poly(3-methylthiophene) grown electrochemically onto preformed source and drain electrodes. Although a field effect is present after electrochemical undoping, stable device characteristics with a high modulation ratio are obtained only after vacuum annealing at an elevated temperature, and only then if the devices are held in vacuo. The polymer is shown to be p type and the devices operate in accumulation only. The hole mobility in devices thermally annealed under vacuum is around 10 -3 cm 2 V -1 s -1. On exposure to ambient laboratory air, the device conductance increases by several orders of magnitude. This increase may be reversed by subjecting the device to a further high-temperature anneal under vacuum. Subsidiary experiments show that these effects are caused by the reversible doping of the polymer by gaseous oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic conduction of thin-film field-effect-transistors (FETs) of sexithiophene was studied. In most cases the transfer curves deviate from standard FET theory; they are not linear, but follow a power law instead. These results are compared to conduction models of "variable-range hopping" and "multi-trap-and-release". The accompanying IV curves follow a Poole-Frenkel (exponential) dependence on the drain voltage. The results are explained assuming a huge density of traps. Below 200 K, the activation energy for conduction was found to be ca. 0.17 eV. The activation energies of the mobility follow the Meyer-Neldel rule. A sharp transition is seen in the behavior of the devices at around 200 K. The difference in behavior of a micro-FET and a submicron FET is shown. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field effect transistors based on several conjugated organic materials were fabricated and assesed in terms of electrical stability. The device characteristics were studied using steady state measurements as well as techniques for addressing trap states. Temperature-dependent measurements show clear evidence for an electrical instability occurring above 200 K that is caused by an electronic trapping process. It is suggested that the trapping sites are created by a change in the organic conjugated chain, a process similar to a phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field effect transistors (FETs) based on organic materials were investigated as sensors for detecting 2,4,6-trinitrotoluene (TNT) vapors. Several FET devices were fabricated using two types of semiconducting organic materials, solution processed polymers deposited by spin coating and, oligomers (or small molecules) deposited by vacuum sublimation. When vapors of nitroaromatic compounds bind to thin films of organic materials which form the transistor channel, the conductivity of the thin film increases and changes the transistor electrical characteristic. The use of the amplifying properties of the transistor represents a major advantage over conventional techniques based on simple changes of resistance in polymers frequently used in electronic noses.