9 resultados para CAPACITANCE-VOLTAGE
em Universidade do Algarve
Resumo:
Free standing diamond films were used to study the effect of diamond surface morphology and microstructure on the electrical properties of Schottky barrier diodes. By using free standing films both the rough top diamond surface and the very smooth bottom surface are available for post-metal deposition. Rectifying electrical contacts were then established either with the smooth or the rough surface. The estimate of doping density from the capacitance-voltage plots shows that the smooth surface has a lower doping density when compared with the top layers of the same film. The results also show that surface roughness does not contribute significantly to the frequency dispersion of the small signal capacitance. The electrical properties of an abrupt asymmetric n(+)(silicon)-p(diamond) junction have also been measured. The I-V curves exhibit at low temperatures a plateau near zero bias, and show inversion of rectification. Capacitance-voltage characteristics show a capacitance minimum with forward bias, which is dependent on the environment conditions. It is proposed that this anomalous effect arises from high level injection of minority carriers into the bulk.
Resumo:
Electrical measurements have been performed on poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] in a pn junction with silicon. These included current-voltage measurements, capacitance-voltage measurements, capacitance-transient spectroscopy, and admittance spectroscopy. The measurements show evidence for large minority-carrier injection into the polymer possibly enabled by interface states for which evidence is also found. The shallow acceptor level depth (0.12 eV) and four deep trap level activation energies (0.30 and 1.0 eV majority-carrier type; 0.48 and 1.3 eV minority-carrier type) are found. Another trap that is visible at room temperature has point-defect nature. (C) 2001 American Institute of Physics.
Resumo:
A detailed investigation both of the DC and of the AC electrical properties of the Schottky barrier formed between aluminium and electrodeposited poly(3-methylthiophene) is reported. The devices show rectification ratios up to 2 x 10(4) which can be increased further after post-metal annealing. The reverse characteristics of the devices follow predictions based on the image-force lowering of the Schottky barrier, from which the doping density can be estimated, As the forward voltage increases, the device current is limited by the bulk resistance of the polymer with some evidence for injection limitation at the gold counter-electrode at high bias. In the bulk-limited regime, the device current is thermally activated near room temperature with an activation energy in the range 0.2-0.3 eV. Below about 150 K the device current is almost independent of temperature. Capacitance-voltage plots obtained at frequencies well below the device relaxation frequency indicate the presence of two distinct acceptor states, A set of shallow acceptor states are active in forward bias and are believed to determine the bulk conductivity of the polymer. A set of deeper accepters are active only for very small forward voltages and for all reverse voltages, namely when band banding causes the Fermi energy to cross these states. The density of these deeper states is approximately an order of magnitude greater than that of the shallow states. Evidence is presented also for the influence of fabrication conditions on the formation of an insulating interfacial layer at the rectifying interface. The presence of such a layer leads to inversion at the polymer surface and a modification of the I-V characteristics.
Resumo:
Both the DC and AC admittance of Schottky barrier diodes formed at the interface of aluminium and poly(3-methyl thiophene) have been investigated in some detail. The capacitance-voltage plots for the devices suggest the presence of two acceptor states, one shallow and one deep. The total concentration of acceptor states, 10 24-10 26 m -3 depending on the degree of undoping, agrees well with estimates from the reverse I-V characteristics assuming image force lowering of the interfacial potential barrier.
Resumo:
Schottky diodes resulting from an intimate contact of aluminum on electro-deposited poly(3-methylthiopene), PMeT, have been studied by admittance spectroscopy, capacitance-voltage and current-voltage measurements, and optically-induced current transients. The loss-tangents show the existence of interface states that can be removed by vacuum annealing, also visible in the transients. Furthermore, the CV curves don't substantiate the idea of movement of the dopant ions.
Resumo:
Schottky diodes resulting from an intimate contact of aluminum on electrodeposited poly(3-methylthiopene) were studied by admittance spectroscopy, capacitance-voltage measurements and voltaic and optically-induced current and capacitance transients. The loss tangents show the existence of interface states that can be removed by vacuum annealing. Furthermore, the C-V curves contradict the idea of movement of the dopant ions.
Resumo:
Schottky barrier diodes based on Al/poly(3-methylthiophene)/Au have been fabricated and their electrical behaviour investigated. I-V characteristics revealed a dependence on the fabrication conditions, specifically on the time under vacuum prior to evaporation of the rectifying contact and post-metal annealing at elevated temperature. The available evidence is consistent with the formation of a thin insulating layer between the metal and the polymer following these procedures. Long periods under vacuum prior to deposition of the aluminium electrode reduced the likelihood of such a layer forming. Capacitance-voltage plots of the devices were stable to voltage cycling, so long as the forward voltage did not exceed similar to 1 V. Above this a small degree of hysteresis was observed, which is attributed to the filling/emptying of interface states or traps in the polymer.
Resumo:
Transient capacitance methods were applied to the depletion region of an abrupt asymmetric n(+) -p junction of silicon and unintentionally doped poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] (MEH-PPV). Studies in the temperature range 100-300 K show the presence of a majority-carrier trap at 1.0 eV and two minority traps at 0.7 and 1.3 eV, respectively. There is an indication for more levels for which the activation energy could not be determined. Furthermore, admittance data reveal a bulk activation energy for conduction of 0.12 eV, suggesting the presence of an additional shallow acceptor state. (C) 1999 American Institute of Physics. [S0003-6951(99)02308-6].
Resumo:
The present work reports some experimental results on the electrical AC behaviour of metal-undoped diamond Schottky diodes fabricated with a free-standing MPCVD diamond film (5 mum thick). The metals are gold for the ohmic contact and aluminium for the rectifier. The capacitance and loss tangent vs, frequency shows that capacitance presents a relaxation maximum at frequencies near 10 kHz at room temperature. Although the simple model (small equivalent circuit) can justify the values for the relaxation, it cannot justify the departure from the Debye model, also verified in the Cole-Cole plot. Taking into account the existence of traps in the depletion region, a best fit to the experimental results was obtained. The difference between the Fermi level and the band edge of 0.2-0.3 eV is in agreement with the activation energy found from the loss tangent analysis. The capacitance with applied voltage (Mott-Schottky plots) gives a defect density of 10(16) cm(-3) with contact potentials near 0.5 V and the profile of defect density obtained shows a major density (approx. 10(17) cm(-3)) in a layer with a thickness less than 50 nm from the junction, decreasing by one order of magnitude with increasing distance. Finally a structural model is proposed to explain the AC behaviour found. (C) 2001 Elsevier Science B.V. All rights reserved.