21 resultados para 090507 Transport Engineering

em University of Michigan


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive engineering analysis of the coastal sediment transport processes along a 42-kilometer segment of the North Carolina shoreline from Wrightsville Beach to Fort Fisher is presented. Included in the analysis is an interpretation of the littoral processes, longshore transport, and the behavior and success of beach nourishment projects at Wrightsville Beach and Carolina Beach, North Carolina. The historical position of the MLW, MSL, and MHW contours, relative to a fixed base line, is plotted for the period between 1964 and 1975. An equivalent volumetric erosion or accretion between successive surveys is determined by multiplying the average excursion distance of the contours by a constant of proportionality. The plots of excursion distance versus time for the MLW, MSL, and MHW contours also show the time response of the beach fills. This response is described by a mathematical function. The alongshore components of wave-induced energy flux are also determined within the study area through wave refraction analysis. This information, together with the information on volumetric change, is used in a sediment budget analysis to determine the coefficient of alongshore sediment transport and the inlet trapping characteristics. (Author).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Prepared for U.S. Army Engineer District, Mobile."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes abstract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Issued October 1977.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"April 1980."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Atomic Energy Commission Contract AT(11-1)-490."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New dredge-disposal techniques may serve the dual role of aiding sand by-passing across coastal inlets, and beach nourishment, provided the dredged sediments placed seaward of the surf zone move shoreward into that zone. During the summer of 1976, 26,750 cubic meters of relatively coarse sediment was dredged from New River Inlet, North Carolina, moved down coast by a split-hull barge, and placed in a 215-meter coastal reach between the 2- and 4-meter depth contours. Bathymetric changes on the disposal piles and in the adjacent beach and nearshore area were studied for a 13-week period (August to November 1976) to determine the modification of the surrounding beach and nearshore profile, and the net transport direction of the disposal sediment. The sediment piles initially created a local shoal zone with minimum depths of 0.6 meter. Disposal sediment was coarser (Mn = 0.49 millimeter) than the native sand at the disposal site (Mn = 0.14 millimeter) and coarser than the composite mean grain size of the entire profile (Mn = 0.21 millimeter). Shoaling and breaking waves caused rapid erosion of the pile tops and a gradual coalescing of the piles to form a disposal bar located seaward (= 90 meters) of a naturally occurring surf zone bar. As the disposal bar relief was reduced, the disposal bar-associated breaker zone was restricted to low tide times or periods of high wave conditions.