2 resultados para thermophilic microorganism

em Laboratório Nacional de Energia e Geologia - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current energy market requires urgent revision for the introduction of renewable, less-polluting and inexpensive energy sources. Biohydrogen (bioH2) is considered to be one of the most appropriate options for this model shift, being easily produced through the anaerobic fermentation of carbohydrate-containing biomass. Ideally, the feedstock should be low-cost, widely available and convertible into a product of interest. Microalgae are considered to possess the referred properties, being also highly valued for their capability to assimilate CO2 [1]. The microalga Spirogyra sp. is able to accumulate high concentrations of intracellular starch, a preferential carbon source for some bioH2 producing bacteria such as Clostridium butyricum [2]. In the present work, Spirogyra biomass was submitted to acid hydrolysis to degrade polymeric components and increase the biomass fermentability. Initial tests of bioH2 production in 120 mL reactors with C. butyricum yielded a maximum volumetric productivity of 141 mL H2/L.h and a H2 production yield of 3.78 mol H2/mol consumed sugars. Subsequently, a sequential batch reactor (SBR) was used for the continuous H2 production from Spirogyra hydrolysate. After 3 consecutive batches, the fermentation achieved a maximum volumetric productivity of 324 mL H2/L.h, higher than most results obtained in similar production systems [3] and a potential H2 production yield of 10.4 L H2/L hydrolysate per day. The H2 yield achieved in the SBR was 2.59 mol H2/mol, a value that is comparable to those attained with several thermophilic microorganisms [3], [4]. In the present work, a detailed energy consumption of the microalgae value-chain is presented and compared with previous results from the literature. The specific energy requirements were determined and the functional unit considered was gH2 and MJH2. It was possible to identify the process stages responsible for the highest energy consumption during bioH2 production from Spirogyra biomass for further optimisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, carotenoids are valuable bioactive molecules for several industries, such as chemical, pharmaceutical, food and cosmetics, due to their multiple benefits as natural colorants, antioxidants and vitamin precursors. Hence, the increasing interest on these high added-value products has led to the search of alternatives, more cost-effective and with better yields, towards their industrial production. Indeed, microbial metabolism offers a promising option for carotenoids production. Herein it is shown the potential of the dibenzothiophene desulfurizing bacterium Gordonia alkanivorans strain 1B as a high carotenoid-producer microorganism. The novel carotenoids, produced under different culture conditions, were extracted with DMSO and then further analyzed both through spectrophotometry and HPLC. When grown in glucose-sulfate-light, strain 1B was able of achieving 2015 g carotenoids per g DCW in shake-flask assays, with about 60% corresponding to lutein, canthaxanthin and astaxanthin. Further optimization studies open a new focus of research aiming to get a hyper pigment-producer strain that may be applied towards different industrial sectors.