2 resultados para Wave energy production

em Laboratório Nacional de Energia e Geologia - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the construction and structuring of a technological niche – i.e. a protected space where promising but still underperforming technologies are stabilized and articulated with societal needs – and discusses the processes that influence niche development and may enable niche breakout. In theoretical terms the paper is grounded on the multi-level approach to sustainability transitions, and particularly on the niche literature. But it also attempts to address the limitations of this literature in what concerns the spatial dimension of niche development. It is argued that technological niches can transcend the narrow territorial boundaries to which they are often confined, and encompass communities and actions that span several spatial levels, without losing some territorial embeddedness. It is further proposed that these features shape the niche trajectory and, therefore, need to be explicitly considered by the niche theoretical framework. To address this problem the paper builds on and extends the socio-cognitive perspective to technology development, introducing a further dimension – space – which broadens the concept of technological niche and permits to better capture the complexity of niche behaviour. This extended framework is applied to the case of an emerging renewable energy technology – wave energy - which exhibits a particularly slow and non-linear development trajectory. The empirical analysis starts by examining how an “overall niche space” in wave energy was spatially constructed over time. Then it investigates in greater detail the niche development processes that took place in Portugal, a country that was among the pioneers in the field, and whose actors have been, from very early stages, engaged in the activities conducted at various spatial levels. Through this combined analysis, the paper seeks to understand whether and how niche development is shaped by processes taking place at different spatial levels. More specifically it investigates the interplay between territorial and relational elements in niche development, and how these different dynamics influence the performance of the niche processes and impact on the overall niche trajectory. The results confirm the niche multi-spatial dynamics, showing that it is shaped by the interplay between a niche relational space constructed by actors’ actions and interactions on/across levels, and the territorial effects introduced by these actors’ embeddedness in particular geographical and institutional settings. They contribute to a more precise understanding of the processes that can accelerate or slow down the trajectory of a technological niche. In addition, the results shed some light into the niche activities conducted in/originating from a specific territorial setting - Portugal - offering some insights into the behaviour of key actors and its implications for the positioning of the country in the emerging field, which can be relevant for the formulation of strategies and policies for this area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current energy market requires urgent revision for the introduction of renewable, less-polluting and inexpensive energy sources. Biohydrogen (bioH2) is considered to be one of the most appropriate options for this model shift, being easily produced through the anaerobic fermentation of carbohydrate-containing biomass. Ideally, the feedstock should be low-cost, widely available and convertible into a product of interest. Microalgae are considered to possess the referred properties, being also highly valued for their capability to assimilate CO2 [1]. The microalga Spirogyra sp. is able to accumulate high concentrations of intracellular starch, a preferential carbon source for some bioH2 producing bacteria such as Clostridium butyricum [2]. In the present work, Spirogyra biomass was submitted to acid hydrolysis to degrade polymeric components and increase the biomass fermentability. Initial tests of bioH2 production in 120 mL reactors with C. butyricum yielded a maximum volumetric productivity of 141 mL H2/L.h and a H2 production yield of 3.78 mol H2/mol consumed sugars. Subsequently, a sequential batch reactor (SBR) was used for the continuous H2 production from Spirogyra hydrolysate. After 3 consecutive batches, the fermentation achieved a maximum volumetric productivity of 324 mL H2/L.h, higher than most results obtained in similar production systems [3] and a potential H2 production yield of 10.4 L H2/L hydrolysate per day. The H2 yield achieved in the SBR was 2.59 mol H2/mol, a value that is comparable to those attained with several thermophilic microorganisms [3], [4]. In the present work, a detailed energy consumption of the microalgae value-chain is presented and compared with previous results from the literature. The specific energy requirements were determined and the functional unit considered was gH2 and MJH2. It was possible to identify the process stages responsible for the highest energy consumption during bioH2 production from Spirogyra biomass for further optimisation.