1 resultado para Stochastic simulation algorithm
em Laboratório Nacional de Energia e Geologia - Portugal
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Aston University Research Archive (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (104)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (12)
- CentAUR: Central Archive University of Reading - UK (36)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (10)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (22)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (7)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (149)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (5)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositorio Academico Digital UANL (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (70)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (50)
- Scielo Saúde Pública - SP (12)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (37)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (18)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (26)
- Université de Montréal (2)
- Université de Montréal, Canada (10)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (162)
- University of Washington (2)
Resumo:
The assessment of wind energy resource for the development of deep offshore wind plants requires the use of every possible source of data and, in many cases, includes data gathered at meteorological stations installed at islands, islets or even oil platforms—all structures that interfere with, and change, the flow characteristics. This work aims to contribute to the evaluation of such changes in the flow by developing a correction methodology and applying it to the case of Berlenga island, Portugal. The study is performed using computational fluid dynamic simulations (CFD) validated by wind tunnel tests. In order to simulate the incoming offshore flow with CFD models a wind profile, unknown a priori, was established using observations from two coastal wind stations and a power law wind profile was fitted to the existing data (a=0.165). The results show that the resulting horizontal wind speed at 80 m above sea level is 16% lower than the wind speed at 80 m above the island for the dominant wind direction sector.