2 resultados para large scattering length
em Instituto Superior de Psicologia Aplicada - Lisboa
Resumo:
Batrachoidids, which include midshipman and toadfish are less known among embryologists, but are common in other fields. They are characteristic for their acoustic communication, and develop hearing and sound production while young juveniles. They lay large benthic eggs (>5mm) with a thick chorion and adhesive disk and slow development, which are particularly challenging for studying embryology. Here we took advantage of a classical tissue clearing technique and the OPenT open-source platform for optical tomography imaging, to image a series of embryos and larvae from 3 to 30mm in length, which allowed detailed 3D anatomical reconstructions non-destructively. We documented some of the developmental stages (early and late in development) and the anatomy of the delicate stato-acoustic organs, swimming bladder and associated sonic muscles. Compared to other techniques accessible to developmental biology labs, OPenT provided advantages in terms of image quality, cost of operation and data throughput, allowing identification and quantitative morphometrics of organs in larvae, earlier and with higher accuracy than is possible with other imaging techniques.
Resumo:
Little is known regarding the swimming ability of the larvae of European plaice (Pleuronectes platessa) in relation to changes in total length (TL), dry weight (DW) and developmental stage, which is surprising given the importance of transport processes to the recruitment dynamics of this species in the North Sea and elsewhere. We investigated ontogenetic changes in the critical swimming speed (Ucrit) of plaice from hatching to the onset of metamorphosis (50 days post-hatch, dph) at 8 °C. The mean (±SD) TL and DW growth rates were 1.59 ± 0.81 and 7.7 ± 0.35 % d−1, respectively. Larvae were unable to swim at against a minimum current speed of <0.5 cm s−1 until 10 dph (7 mm TL), after which Ucrit significantly increased with increasing TL until the onset of metamorphosis and subsequent settlement. Mean (±SD) Ucrit was 0.38(0.35), 1.59(0.54), 2.27(0.49) and 2.99(0.37) cm s−1 for stage I (6.61 ± 2.64 mm TL), stage II (7.75 ± 0.60 mm TL), stage III (9.10 ± 1.00 mm TL) and stage IV (11.59 ± 0.85 mm TL) larvae, respectively. Larval TL, DW, DNA content, RNA content and Ucrit significantly increased, whereas sRD significantly declined as larvae developed from stage I to V. Although inter-individual differences in Ucrit (coefficient of variation, CV = 33 %) were as large as those in biochemical and morphological condition (CV’s of 21–42 %), differences in Ucrit were not significantly related to those in nutritional condition and larvae with lower DNA/DW had also better swimming abilities. These estimates should be useful to ongoing efforts to create individual- based models of the transport, foraging and growth of plaice larvae in the North Sea.