1 resultado para acoustic speech recognition system
em Instituto Superior de Psicologia Aplicada - Lisboa
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archive of European Integration (2)
- Aston University Research Archive (56)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (28)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (36)
- Brock University, Canada (3)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (12)
- CentAUR: Central Archive University of Reading - UK (29)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (37)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (30)
- Dalarna University College Electronic Archive (14)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (18)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (6)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (2)
- Institute of Public Health in Ireland, Ireland (2)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico do Porto, Portugal (19)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (14)
- Massachusetts Institute of Technology (19)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (39)
- Open University Netherlands (1)
- Publishing Network for Geoscientific & Environmental Data (28)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório da Produção Científica e Intelectual da Unicamp (36)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (61)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (26)
- Scielo Saúde Pública - SP (5)
- Scientific Open-access Literature Archive and Repository (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (80)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (10)
- Universidade Federal do Pará (10)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (34)
- Université de Montréal (3)
- Université de Montréal, Canada (12)
- University of Connecticut - USA (1)
- University of Michigan (13)
- University of Queensland eSpace - Australia (61)
- University of Southampton, United Kingdom (1)
- University of Washington (4)
Resumo:
The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.