2 resultados para Sound Production
em Instituto Superior de Psicologia Aplicada - Lisboa
Resumo:
The function of fish sounds in territorial defence, in particular its influence on the intruder's behaviour during territorial invasions, is poorly known. Breeding Lusitanian toadfish males (Halobatrachus didactylus) use sounds (boatwhistles) to defend nests from intruders. Results from a previous study suggest that boatwhistles function as a 'keep-out signal' during territorial defence. To test this hypothesis we performed territorial intrusion experiments with muted Lusitanian toadfish. Males were muted by making a cut and deflating the swimbladder (the sound-producing apparatus) under anaesthesia. Toadfish nest-holder males reacted to intruders mainly by emitting sounds (sham-operated and control groups) and less frequently with escalated bouts of fighting. When the nest-holder produced a boatwhistle, the intruder fled more frequently than expected by chance alone. Muted males experienced a higher number of intrusions than the other groups, probably because of their inability to vocalise. Together, our results show that fish acoustic signals are effective deterrents in nest/territorial intrusions, similar to bird song.
Resumo:
Batrachoidids, which include midshipman and toadfish are less known among embryologists, but are common in other fields. They are characteristic for their acoustic communication, and develop hearing and sound production while young juveniles. They lay large benthic eggs (>5mm) with a thick chorion and adhesive disk and slow development, which are particularly challenging for studying embryology. Here we took advantage of a classical tissue clearing technique and the OPenT open-source platform for optical tomography imaging, to image a series of embryos and larvae from 3 to 30mm in length, which allowed detailed 3D anatomical reconstructions non-destructively. We documented some of the developmental stages (early and late in development) and the anatomy of the delicate stato-acoustic organs, swimming bladder and associated sonic muscles. Compared to other techniques accessible to developmental biology labs, OPenT provided advantages in terms of image quality, cost of operation and data throughput, allowing identification and quantitative morphometrics of organs in larvae, earlier and with higher accuracy than is possible with other imaging techniques.