2 resultados para Key to species

em Instituto Superior de Psicologia Aplicada - Lisboa


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vocal differentiation is widely documented in birds and mammals but has been poorly investigated in other vertebrates, including fish, which represent the oldest extant vertebrate group. Neural circuitry controlling vocal behaviour is thought to have evolved from conserved brain areas that originated in fish, making this taxon key to understanding the evolution and development of the vertebrate vocal-auditory systems. This study examines ontogenetic changes in the vocal repertoire and whether vocal differentiation parallels auditory development in the Lusitanian toadfish Halobatrachus didactylus (Batrachoididae). This species exhibits a complex acoustic repertoire and is vocally active during early development. Vocalisations were recorded during social interactions for four size groups (fry: <2 cm; small juveniles: 2-4 cm; large juveniles: 5-7 cm; adults >25 cm, standard length). Auditory sensitivity of juveniles and adults was determined based on evoked potentials recorded from the inner ear saccule in response to pure tones of 75-945 Hz. We show an ontogenetic increment in the vocal repertoire from simple broadband-pulsed 'grunts' that later differentiate into four distinct vocalisations, including low-frequency amplitude-modulated 'boatwhistles'. Whereas fry emitted mostly single grunts, large juveniles exhibited vocalisations similar to the adult vocal repertoire. Saccular sensitivity revealed a three-fold enhancement at most frequencies tested from small to large juveniles; however, large juveniles were similar in sensitivity to adults. We provide the first clear evidence of ontogenetic vocal differentiation in fish, as previously described for higher vertebrates. Our results suggest a parallel development between the vocal motor pathway and the peripheral auditory system for acoustic social communication in fish.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Early life history traits (ELHTs) are key to understand recruitment patterns in marine animals. However, for reef fishes, studies on ELHTs are mainly focused on tropical systems and little is known for temperate reefs. In this study we used SMURFs (Standard Monitoring Units for the Recruitment of Reef Fishes) to collect fish in a temperate rocky reef system (Arrábida Marine Park, Portugal) on a weekly basis for three months during the recruitment period. Six sub-surface SMURFs sampled 2490 Atlantic horse mackerel (Trachurus trachurus) postlarvae and juveniles. Sagittal and lapilli otoliths were extracted from a subsample of 296 fish and ELHTs, such as size and age at settlement, growth rate and age at first secondary growth formation were examined. Additionally, we tested three growth curves and selected the best suited to back-calculate the hatching pattern based on the lengths of all sampled fish. Standard length ranged from 6.13 mm to 48.56 mm and subsampled fish were aged between 19 days to 44 days. Age and size at settlement were estimated between 19 days and 36 days for individuals of 6.13 mm and 24.95 mm, respectively. Otolith shape changed clearly with increasing age and, on average, secondary growth started to form on day 33 (±3 days). Age/length relationship was well described by a Gompertz growth model which was used to back-calculate hatching dates. Four distinct hatching cohorts were identified with fish of the earliest cohort showing a faster body and otolith growth. This study indicates that the nearshore environment might have an important role in the early growth, development and hence recruitment of Atlantic horse mackerel. Information on the early life history of Atlantic horse mackerel is key to understand recruitment processes for this economically and biologically important species.