1 resultado para Cascaded classifier
em Instituto Superior de Psicologia Aplicada - Lisboa
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (8)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (88)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (35)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (17)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (60)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (18)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (25)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (14)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (10)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (27)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (1)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (9)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (6)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (24)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (113)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (4)
- Scielo Saúde Pública - SP (10)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (7)
- Universidad Politécnica de Madrid (88)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (4)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (37)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (37)
- Université de Montréal (3)
- Université de Montréal, Canada (31)
- Université Laval Mémoires et thèses électroniques (3)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (29)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
The electrocardiogram (ECG) signal has been widely used to study the physiological substrates of emotion. However, searching for better filtering techniques in order to obtain a signal with better quality and with the maximum relevant information remains an important issue for researchers in this field. Signal processing is largely performed for ECG analysis and interpretation, but this process can be susceptible to error in the delineation phase. In addition, it can lead to the loss of important information that is usually considered as noise and, consequently, discarded from the analysis. The goal of this study was to evaluate if the ECG noise allows for the classification of emotions, while using its entropy as an input in a decision tree classifier. We collected the ECG signal from 25 healthy participants while they were presented with videos eliciting negative (fear and disgust) and neutral emotions. The results indicated that the neutral condition showed a perfect identification (100%), whereas the classification of negative emotions indicated good identification performances (60% of sensitivity and 80% of specificity). These results suggest that the entropy of noise contains relevant information that can be useful to improve the analysis of the physiological correlates of emotion.