2 resultados para Biological responses
em Instituto Superior de Psicologia Aplicada - Lisboa
Resumo:
Small pelagic fishes are known to respond rapidly to changes in ocean climate. In this study, we evaluate the effects of future environmental warming (+2°C) during the early ontogeny of the European sardine, Sardina pilchardus. Warming reduced the survival of 30-day-old larvae by half. Length at hatching increased with temperature as expected, but no significant effect was observed on the length and growth at 30 days post-hatching. Warming did not significantly affect the thermal tolerance of sardine larvae, even though the mean lethal temperature increased by 1°C. In the warm conditions, sardine larvae showed signs of thermal stress, indicated by a pronounced increase in larval metabolism (Q 10 = 7.9) and a 45% increase in the heat shock response. Lipid peroxidation was not significantly affected by the higher temperature, even though the mean value doubled. Warming did not affect the time larvae spent swimming, but decreased by 36% the frequency of prey attacks. Given the key role of these small pelagics in the trophic dynamics off the Western Iberian upwelling ecosystem, the negative effects of warming on the early stages may have important implications for fish recruitment and ecosystem structure.
Resumo:
Early life stages of many marine organisms are being challenged by climate change, but little is known about their capacity to tolerate future ocean conditions. Here we investigated a comprehensive set of biological responses of larvae of two commercially important teleost fishes, Sparus aurata (gilthead seabream) and Argyrosomus regius (meagre), after exposure to future predictions of ocean warming (+4 °C) and acidification (ΔpH= 0.5). The combined effect of warming and hypercapnia elicited a decrease in the hatching success (by 26.4 and 14.3 % for S. aurata and A. regius, respectively) and larval survival (by half) in both species. The length for newly-hatched larvae was not significantly affected, but a significant effect of hypercapnia was found on larval growth. However, while S. aurata growth was reduced (24.8–36.4 % lower), A. regius growth slightly increased (3.2–12.9 % higher) under such condition. Under acidification, larvae of both species spent less time swimming, and displayed reduced attack and capture rates of prey. The impact of warming on these behavioural traits was opposite but less evident. While not studied in A. regius, the incidence of body malformations in S. aurata larvae increased significantly (more than tripled) under warmer and hypercapnic conditions. These morphological impairments and behavioural changes are expected to affect larval performance and recruitment success, and further influence the abundance of fish stocks and the population structure of these commercially important fish species. However, given the pace of ocean climate change, it is important not to forget that species may have the opportunity to acclimate and adapt.