1 resultado para Automatic classifier
em Instituto Superior de Psicologia Aplicada - Lisboa
Filtro por publicador
- Repository Napier (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (9)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (23)
- Aston University Research Archive (37)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (92)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CentAUR: Central Archive University of Reading - UK (60)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (13)
- Cochin University of Science & Technology (CUSAT), India (13)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (43)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (20)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (13)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (3)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (5)
- Publishing Network for Geoscientific & Environmental Data (11)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (72)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (16)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (13)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (9)
- Universidad Politécnica de Madrid (89)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (7)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (1)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (43)
- Université de Montréal, Canada (3)
- Université Laval Mémoires et thèses électroniques (2)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (113)
- University of Queensland eSpace - Australia (37)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
The electrocardiogram (ECG) signal has been widely used to study the physiological substrates of emotion. However, searching for better filtering techniques in order to obtain a signal with better quality and with the maximum relevant information remains an important issue for researchers in this field. Signal processing is largely performed for ECG analysis and interpretation, but this process can be susceptible to error in the delineation phase. In addition, it can lead to the loss of important information that is usually considered as noise and, consequently, discarded from the analysis. The goal of this study was to evaluate if the ECG noise allows for the classification of emotions, while using its entropy as an input in a decision tree classifier. We collected the ECG signal from 25 healthy participants while they were presented with videos eliciting negative (fear and disgust) and neutral emotions. The results indicated that the neutral condition showed a perfect identification (100%), whereas the classification of negative emotions indicated good identification performances (60% of sensitivity and 80% of specificity). These results suggest that the entropy of noise contains relevant information that can be useful to improve the analysis of the physiological correlates of emotion.