3 resultados para Woody feedstock

em Universidade Técnica de Lisboa


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agroforestry is considered nowadays as a sustainable form of land management that is being promoted by different global institutions like FAO and its Global Alliance Smart Climate Agriculture to mitigate and adaptate to Climate change. The European Commission through the protection of landscape features, greening and Rural Development Programs is promoting the essential presence of woody vegetation across Europe, but in a way that is difficult to recognize by farmers. AGROFE and AGFORWARD projects are both demonstrating the important value of Agroforestry at European level, which together with EURAF are pushing European Commission to include measures enhancing Agroforestry. However, there is a need of a European Agroforestry Strategy that recognizes the drawbacks of Agroforestry to be implemented at European level. This strategy should include the main mechanisms to show farmers how to implement it and at the same time to get funded for the important ecosystem services that they provide when implementing agroforestry. AGFORWARD project has identified the main agroforestry practices in Europe, highlighting silvopasture, but showing the importance that others forms of agroforestry have to play like homegardens with multipurpose trees, or the adequate improvement of fallow lands where woody vegetation can enhance the levels of organic matter in the soil if adequately managed. AGFORWARD also shows the lack of information of the real implementation of agroforestry practices like forest farming, in spite of the important productive and ecosystem benefits it provides. EURAF through the participation in the different civil dialogue groups (CAP, Direct Payments and Greening, Forestry and Cork, Organic Farming, Arable, Environment and Climate Change and Rural Development) has included and promoted agroforestry within the European Agenda. The role of Agroforestry has been also enhanced in the Groups of experts of European Structural and Investments funds and as part of the European Network for Rural Development and its derived groups: innovation, evaluation and CLLD/LEADER. EURAF is pleased to announce that Agroforestry will be discussed as part of a focus group of the European Innovation Partnership, so, apply and join the group. This book represents the lastest findings on agroforestry in Europe, integrating the participation of researchers but also policy makers and farmers and farmers' associations. It was a pleasure for EURAF to integrate all this needed knowledge to be disseminated at European levels. On behalf of EURAF, I wish all of you a successful meeting and invite you to strengthen agroforestry within the different European Union countries when you go back home. Rosa Mosquera-LOSADA President of EURAF

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doutoramento em Engenharia Agronómica - Instituto Superior de Agronomia - UL

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A better understanding of grapevine responses to drought and high air temperatures can help to optimize vineyard management to improve water use efficiency, yield and berry quality. Faster and robust field phenotyping tools are needed in modern precision viticulture, in particular in dry and hot regions such as the Mediterranean. Canopy temperature (Tc) is commonly used to monitor water stress in plants/crops and to characterize stomatal physiology in different woody species including Vitis vinifera. Thermography permits remote determination of leaf surface or canopy temperature in the field and also to assess the range and spatial distribution of temperature from different parts of the canopies. Our hypothesis is that grapevine genotypes may show different Tc patterns along the day due to different stomatal behaviour and heat dissipation strategies. We have monitored the diurnal and seasonal course of Tc in two grapevine genotypes, Aragonez (syn. Tempranillo) and Touriga Nacional subjected to deficit irrigation under typical Mediterranean climate conditions. Temperature measurements were complemented by determination of the diurnal course of leaf water potential (ψleaf) and leaf gas exchange. Measurements were done in two seasons (2013 and 2014) at different phenological stages: i) mid-June (green berry stage), ii) mid-July (veraison), iii) early August (early ripening) and iv) before harvest (late ripening). Correlations between Tc and minimal stomatal conductance will be presented for the two genotypes along the day. Results are discussed over the use of thermal imagery to derive information on genotype physiology in response to changing environmental conditions and to mild water stress induced by deficit irrigation. Strategies to optimize the use of thermal imaging in field conditions are also proposed