9 resultados para Teoria da Resposta ao Item (TRI)
em Universidade dos Açores - Portugal
Resumo:
Dissertação de Mestrado, Matemática para Professores, 25 de Outubro 2013, Universidade dos Açores.
Resumo:
Dissertação de Mestrado, Gestão/MBA, 30 de Janeiro de 2014, Universidade dos Açores,
Resumo:
Na sociedade atual, completamente dominada pela constante procura de informação, faz todo o sentido recorrer a formas organizadas de apresentar os dados recolhidos que permitam uma leitura rápida e acessível. As matrizes, pela sua estrutura, possibilitam este tipo de abordagem com vista ao tratamento de uma grande quantidade de informação. (...) Poucas áreas da Matemática sofreram nos últimos 30 anos uma evolução tão significativa como a Teoria de Matrizes. Isto deve-se ao desenvolvimento de computadores cada vez mais potentes do ponto de vista da capacidade computacional, bem como à introdução de métodos matriciais em diferentes áreas de aplicação. Atualmente, a Teoria de Matrizes é utilizada com frequência para modelar muitos fenómenos do mundo real. Mas quando é que surgiu este ramo da Matemática? (...) Embora este ramo da Matemática tenha sido desenvolvido a partir de meados do século XIX, conceitos elementares de matrizes remontam ao período anterior ao nascimento de Cristo, uma vez que os chineses aplicavam métodos matriciais para resolver certos sistemas de equações. Os quadrados mágicos constituem outro exemplo de aplicação rudimentar do conceito de matriz. As lendas sugerem que os quadrados mágicos são originários da China, tendo sido referidos pela primeira vez num manuscrito do tempo do imperador Yu, cerca de 2200 a. C. (...) Em 1514, Albrecht Dürer, conhecido artista da Renascença, pintou um quadro intitulado "Melancolia", onde figura um quadrado mágico, precisamente de ordem 4 (figura 2). De notar que os dois números centrais da última linha do quadrado permitem ler "1514", o ano em que o quadro foi pintado. O leitor pode comprovar que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais desse quadrado é sempre igual a 34, a constante mágica. Além disso, 34 é a soma dos números dos cantos (16+13+4+1=34) e do quadrado central 2x2 (10+11+6+7=34). (...)
Resumo:
Um dos fenómenos mais curiosos do ano de 2005, que não deve ter passado despercebido ao leitor, foi o aparecimento do Sudoku. Os jornais começaram a incluir este quebra-cabeças ao lado dos horóscopos e das habituais palavras cruzadas. (...) Mas terá o Sudoku alguma Matemática? À primeira vista, o leitor pode pensar que a resposta é afirmativa, tendo em conta que, num desafio de Sudoku, utilizam-se os primeiros nove números naturais, do 1 ao 9. E se tem números é porque tem Matemática! A verdade é que nem tudo o que tem números é Matemática. Além disso, a dinâmica e interesse do Sudoku não está propriamente na utilização de números. Os números estão no Sudoku apenas porque são 9 símbolos que estamos muito habituados a reconhecer e a distinguir e não porque cumprem qualquer função matemática na resolução deste quebra-cabeças. As estratégias utilizadas na resolução de um problema de Sudoku assentam essencialmente na lógica e na eliminação de possibilidades. Podemos mesmo substituir cada um dos números, do 1 ao 9, por quaisquer outros símbolos, por exemplo por nove letras do alfabeto, obtendo exatamente o mesmo tipo de problema na sua essência. (...) A estrutura deste quebra-cabeças baseia-se num quadrado, com n linhas e n colunas, que deve ser preenchido com n símbolos diferentes em que cada símbolo aparece uma e uma só vez em cada linha e cada coluna. Este tipo de estrutura tem um nome em Matemática. Chama-se quadrado latino e é estudo em diversas áreas da Matemática, como na Álgebra. (...)
Resumo:
XI Colóquio sobre Questões Curriculares / VII Colóquio Luso-Brasileiro & I Colóquio Luso-Afro-Brasileiro sobre Questões Curriculares. Complexo pedagógico I, Campus de Gualtar - Universidade do Minho, Braga - Portugal, entre quinta-feira, 18-09-2014 e sábado, 20-09-2014.
Resumo:
Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)
Resumo:
XII Congresso da Sociedade Portuguesa de Ciências da Educação: Espaços de investigação, reflexão e ação interdisciplinar. Vila Real de 11 de Setembro a 13 de Setembro de 2014.
Resumo:
XI Encuentros Internacionales de Filosofía en el Camino de Santiago: Cultura, Educación e Innovación. Santiago de Compostela 13, 14 e 15 de Setembro de 2012.
Resumo:
Martin Gardner (1914-2010) foi um excelente divulgador de Matemática Recreativa. Durante mais de 25 anos escreveu uma coluna intitulada "Jogos Matemáticos" para a Scientific American, revista americana de divulgação científica. Escreveu também com regularidade para a revista Skeptical Inquirer e foi autor de mais de 70 obras. O seu trabalho inspirou centenas de leitores a apreciar e a querer saber mais sobre o vasto mundo da Matemática. Gardner é conhecido por apresentar interessantes enigmas e desafios matemáticos. Neste texto, analisamos três problemas da sua autoria. (...) O segredo para uma rápida resposta a estes problemas reside no conhecimento dos critérios de divisibilidade do 3 e do 9. Aproveitamos, por isso, a oportunidade para rever alguns dos principais critérios de divisibilidade. Como forma de testar a informação que apresentaremos de seguida, o leitor pode socorrer-se de um número com vários algarismos que tenha à mão. Nos exemplos abaixo, utilizaremos o ISBN-13 do livro Grupos de Simetria: Identificação de Padrões no Património Cultural dos Açores, publicado recentemente pela Associação Ludus e pela Apenas Livros, da autoria conjunta de Ricardo Teixeira, Susana Costa e Vera Moniz. O número é o seguinte: 9 789 896 185 039. (...) O leitor pode mesmo aproveitar para aplicar estes critérios de divisibilidade e fazer um brilharete junto de familiares e amigos. Por exemplo, pode virar-se de costas e pedir a um amigo que construa uma sequência de 5 cartas, utilizando cartas numeradas do Ás ao 5, pela ordem que bem entender; sem ver a sequência formada, a sua "intuição de mágico" dar-lhe-à a certeza de que o número é divisível por 3!