6 resultados para Natural bridges
em Universidade dos Açores - Portugal
Resumo:
Copyright © 2010 Elsevier B.V. All rights reserved.
Resumo:
O efeito da insularidade reflecte-se no número limitado de espécies arbóreas naturais dos Açores. As mais comuns são a Morella faya (Faia-da-terra), Picconia azorica (Pau-branco), Laurus azorica (Louro), Juniperus brevifolia (Cedro-do-mato), Ilex perado subsp. azorica (Azevinho), Erica azorica (Urze) e Frangula azorica (Sanguinho). Pelo contrário, Prunus azorica (Ginjeira-brava) é actualmente muito rara e Taxus bacatta (Teixo) encontra-se à beira da extinção. Dependendo das condições ambientais, particularmente de temperatura, pluviosidade e exposição ao vento, encontramos diferentes espécies a dominar a copa da floresta. […].
Resumo:
Copyright © Springer Science+Business Media Dordrecht 2014.
Resumo:
In memory of our beloved Professor José Rodrigues Santos de Sousa Ramos (1948-2007), who João Cabral, one of the authors of this paper, had the honor of being his student between 2000 and 2006, we wrote this paper following the research by experimentation, using the new technologies to capture a new insight about a problem, as him so much love to do it. His passion was to create new relations between different fields of mathematics. He was a builder of bridges of knowledge, encouraging the birth of new ways to understand this science. One of the areas that Sousa Ramos researched was the iteration of maps and the description of its behavior, using the symbolic dynamics. So, in this issue of this journal, honoring his memory, we use experimental results to find some stable regions of a specific family of real rational maps, the ones that he worked with João Cabral. In this paper we describe a parameter space (a,b) to the real rational maps fa,b(x) = (x2 −a)/(x2 −b), using some tools of dynamical systems, as the study of the critical point orbit and Lyapunov exponents. We give some results regarding the stability of these family of maps when we iterate it, specially the ones connected to the order 3 of iteration. We hope that our results would help to understand better the behavior of these maps, preparing the ground to a more efficient use of the Kneading Theory on these family of maps, using symbolic dynamics.
Resumo:
Dissertação de Mestrado, Engenharia do Ambiente, 9 de Outubro de 2015, Universidade dos Açores.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 22 de Janeiro de 2016, Universidade dos Açores.