6 resultados para Key-term separation principle

em Universidade dos Açores - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

World Congress of Malacology, Ponta Delgada, July 22-28, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fishing decreases the biomass of target species via reduction in the numbers and/or size of individuals. In natural systems, the strength of biological interactions, including predator-prey dynamics, are often density or size-dependent. Hence, changes in the numbers or size of key taxa may be expected to influence biological interactions but their effects do not need to be identical. Here we compare the effects of biomass reduction in populations of the exploited limpet Patella candei. Biomass removal was experimentally achieved by either removing individuals (density reduction) or by replacing large by small individuals (size reduction), while controlling for total limpet biomass in a laboratory-based experiment. At the experiment’s termination, biomass reduction led to proportional changes in area grazed. However, there was no difference whether this was achieved via changes in density or in size. Furthermore, no discernible effects of treatments were evident on different components of the algal assemblage. A field survey also revealed that P. candei biomass explained a greater proportion in variation in the area free of algae than density alone. Our results suggest that loss of biomass in populations of P. candei has quantitatively and qualitatively similar effects on algal cover regardless of whether it is caused by an equivalent (biomass) reduction in the numbers or size of individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento, Física, 17 de Dezembro de 2013, Universidade dos Açores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar (Biologia Marinha)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are launching a long-term study to characterize the biodiversity at different elevations in several Azorean Islands. Our aim is to use the Azores as a model archipelago to answer the fundamental question of what generates and maintains the global spatial heterogeneity of diversity in islands and to be able to understand the dynamics of change across time. An extensive, standardized sampling protocol was applied in most of the remnant forest fragments of five Azorean Islands. Fieldwork followed BRYOLAT methodology for the collection of bryophytes, ferns and other vascular plant species. A modified version of the BALA protocol was used for arthropods. A total of 70 plots (10 m x 10 m) are already established in five islands (Flores, Pico, São Jorge, Terceira and São Miguel), all respecting an elevation step of 200 m, resulting in 24 stations examined in Pico, 12 in Terceira, 10 in Flores, 12 in São Miguel and 12 in São Jorge. The first results regarding the vascular plants inventory include 138 vascular species including taxa from Lycopodiophyta (N=2), Pteridophyta (N=27), Pinophyta (N=2) and Magnoliophyta (N=107). In this contribution we also present the main research question for the next six years within the 2020 Horizon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realization that hard coastal infrastructures support lower biodiversity than natural habitats has prompted a wealth of research seeking to identify design enhancements offering ecological benefits. Some studies showed that artificial structures could be modified to increase levels of diversity. Most studies, however, only considered the short-term ecological effects of such modifications, even though reliance on results from short-term studies may lead to serious misjudgements in conservation. In this study, a sevenyear experiment examined how the addition of small pits to otherwise featureless seawalls may enhance the stocks of a highly-exploited limpet. Modified areas of the seawall supported enhanced stocks of limpets seven years after the addition of pits. Modified areas of the seawall also supported a community that differed in the abundance of littorinids, barnacles andmacroalgae compared to the controls. Responses to different treatments (numbers and size of pits) were speciesspecific and, while some species responded directly to differences among treatments, others might have responded indirectly via changes in the distribution of competing species. This type of habitat enhancement can have positive long-lasting effects on the ecology of urban seascapes.Understanding of species interactions could be used to develop a rule-based approach to enhance biodiversity.