8 resultados para Coluna
em Universidade dos Açores - Portugal
Resumo:
Na sociedade atual, completamente dominada pela constante procura de informação, faz todo o sentido recorrer a formas organizadas de apresentar os dados recolhidos que permitam uma leitura rápida e acessível. As matrizes, pela sua estrutura, possibilitam este tipo de abordagem com vista ao tratamento de uma grande quantidade de informação. (...) Poucas áreas da Matemática sofreram nos últimos 30 anos uma evolução tão significativa como a Teoria de Matrizes. Isto deve-se ao desenvolvimento de computadores cada vez mais potentes do ponto de vista da capacidade computacional, bem como à introdução de métodos matriciais em diferentes áreas de aplicação. Atualmente, a Teoria de Matrizes é utilizada com frequência para modelar muitos fenómenos do mundo real. Mas quando é que surgiu este ramo da Matemática? (...) Embora este ramo da Matemática tenha sido desenvolvido a partir de meados do século XIX, conceitos elementares de matrizes remontam ao período anterior ao nascimento de Cristo, uma vez que os chineses aplicavam métodos matriciais para resolver certos sistemas de equações. Os quadrados mágicos constituem outro exemplo de aplicação rudimentar do conceito de matriz. As lendas sugerem que os quadrados mágicos são originários da China, tendo sido referidos pela primeira vez num manuscrito do tempo do imperador Yu, cerca de 2200 a. C. (...) Em 1514, Albrecht Dürer, conhecido artista da Renascença, pintou um quadro intitulado "Melancolia", onde figura um quadrado mágico, precisamente de ordem 4 (figura 2). De notar que os dois números centrais da última linha do quadrado permitem ler "1514", o ano em que o quadro foi pintado. O leitor pode comprovar que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais desse quadrado é sempre igual a 34, a constante mágica. Além disso, 34 é a soma dos números dos cantos (16+13+4+1=34) e do quadrado central 2x2 (10+11+6+7=34). (...)
Resumo:
Um dos fenómenos mais curiosos do ano de 2005, que não deve ter passado despercebido ao leitor, foi o aparecimento do Sudoku. Os jornais começaram a incluir este quebra-cabeças ao lado dos horóscopos e das habituais palavras cruzadas. (...) Mas terá o Sudoku alguma Matemática? À primeira vista, o leitor pode pensar que a resposta é afirmativa, tendo em conta que, num desafio de Sudoku, utilizam-se os primeiros nove números naturais, do 1 ao 9. E se tem números é porque tem Matemática! A verdade é que nem tudo o que tem números é Matemática. Além disso, a dinâmica e interesse do Sudoku não está propriamente na utilização de números. Os números estão no Sudoku apenas porque são 9 símbolos que estamos muito habituados a reconhecer e a distinguir e não porque cumprem qualquer função matemática na resolução deste quebra-cabeças. As estratégias utilizadas na resolução de um problema de Sudoku assentam essencialmente na lógica e na eliminação de possibilidades. Podemos mesmo substituir cada um dos números, do 1 ao 9, por quaisquer outros símbolos, por exemplo por nove letras do alfabeto, obtendo exatamente o mesmo tipo de problema na sua essência. (...) A estrutura deste quebra-cabeças baseia-se num quadrado, com n linhas e n colunas, que deve ser preenchido com n símbolos diferentes em que cada símbolo aparece uma e uma só vez em cada linha e cada coluna. Este tipo de estrutura tem um nome em Matemática. Chama-se quadrado latino e é estudo em diversas áreas da Matemática, como na Álgebra. (...)
Resumo:
Voltamos ao tema dos quadrados mágicos. (...) Vejamos alguns exemplos curiosos. Começamos pelo Quadrado Mágico do Aniversariante (figura A). Se o leitor fizer as contas, verificará que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais do quadrado é sempre 22 (figura B). Este é, portanto, um quadrado mágico ideal para quem tem 22 anos. Contudo, a sua utilização é muito mais flexível do que à primeira vista se possa pensar. Isto porque também é possível utilizar este quadrado mágico para felicitar qualquer amigo com mais de 22 anos. Se quisermos que o quadrado da figura A tenha constante mágica igual a x, com x>22, basta adicionar a cada um dos números das quatro casas brancas o valor x-22. (...) Na figura D, apresenta-se um Quadrado Mágico Reversível. Este quadrado aparece no livro "Self-working Number Magic", de Karl Fulves, publicado em 1983. Para começar, uma observação atenta a cada linha, coluna ou diagonal do quadrado permite concluir que, em cada uma dessas filas, são utilizados os mesmos algarismos: 1, 6, 8 e 9. Um olhar ainda mais atento permite detetar duas ocorrências de cada um desses algarismos por fila. (...)
Resumo:
Dissertação de Mestrado em Geologia do Ambiente e Sociedade.
Resumo:
Dissertação de Mestrado em Estudos Integrados dos Oceanos.
Resumo:
(...) Recentemente, em 2004, H. Michael Damm provou na sua tese de doutoramento a existência de quase-grupos totalmente anti-simétricos para ordens diferentes de 2 e 6. A tabela da imagem define um quase-grupo totalmente anti-simétrico de ordem 10, adaptado de um exemplo apresentado por Damm na sua tese. Esta tabela é o que se designa por quadrado latino: em cada linha e em cada coluna, cada um dos símbolos utilizados devem figurar uma e uma só vez. Os quadrados latinos surgiram pelas mãos de um grande matemático, talvez o maior matemático de todos os tempos: Leonhard Euler (1707-1783). Este tipo de tabelas não é totalmente estranho ao leitor. Se olhar com atenção, encontrará apenas duas diferenças em relação aos tradicionais desafios de Sudoku: não existem as chamadas "regiões" e utiliza-se o 0, para além dos algarismos 1-9. A descoberta de Damm impulsionou o desenvolvimento de um novo algoritmo com o seu nome, que tem a vantagem de apenas utilizar os algarismos tradicionais, do 0 ao 9, e de detetar 100% dos erros singulares e 100% das transposições de algarismos adjacentes. Em relação ao algoritmo de Verhoeff, tem uma implementação mais simples e deteta 100% dos erros fonéticos (por exemplo, quando se escreve 15 em vez de 50, devido à pronúncia semelhante destes números em inglês: "fifteen" e "fifty"). Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201436571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...)
Resumo:
Benjamin Franklin (1706-1790) foi jornalista, cientista, inventor, homem de estado e diplomata. (...) Benjamin Franklin era um entusiasta de quadrados mágicos. Chegou mesmo a criar os seus próprios quadrados. O mais conhecido é o quadrado 8 por 8 apresentado na imagem. Numa carta publicada em 1769, Franklin refere: "Na minha juventude, divertia-me a construir quadrados mágicos, de modo a que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais principais fosse sempre a mesma; com o passar do tempo, conseguia criar quadrados mágicos, de tamanho razoável, tão depressa quanto conseguia escrever os números nas suas linhas e colunas; mas, por não estar totalmente satisfeito com estes quadrados, que eram demasiado fáceis, impus a mim mesmo o desafio de construir outro tipo de quadrados mágicos, que apresentassem propriedades mais ricas e que constituíssem, assim, um maior estímulo à curiosidade." Em relação ao quadrado mágico da imagem, são utilizados todos os números naturais, do 1 ao 8x8=64, uma e uma só vez. Além disso, a soma dos números de cada linha e de cada coluna é sempre igual a 260, a constante mágica. Existem muitas outras formas de obter o valor 260 (...)
Resumo:
Martin Gardner (1914-2010) foi um excelente divulgador de Matemática Recreativa. Durante mais de 25 anos escreveu uma coluna intitulada "Jogos Matemáticos" para a Scientific American, revista americana de divulgação científica. Escreveu também com regularidade para a revista Skeptical Inquirer e foi autor de mais de 70 obras. O seu trabalho inspirou centenas de leitores a apreciar e a querer saber mais sobre o vasto mundo da Matemática. Gardner é conhecido por apresentar interessantes enigmas e desafios matemáticos. Neste texto, analisamos três problemas da sua autoria. (...) O segredo para uma rápida resposta a estes problemas reside no conhecimento dos critérios de divisibilidade do 3 e do 9. Aproveitamos, por isso, a oportunidade para rever alguns dos principais critérios de divisibilidade. Como forma de testar a informação que apresentaremos de seguida, o leitor pode socorrer-se de um número com vários algarismos que tenha à mão. Nos exemplos abaixo, utilizaremos o ISBN-13 do livro Grupos de Simetria: Identificação de Padrões no Património Cultural dos Açores, publicado recentemente pela Associação Ludus e pela Apenas Livros, da autoria conjunta de Ricardo Teixeira, Susana Costa e Vera Moniz. O número é o seguinte: 9 789 896 185 039. (...) O leitor pode mesmo aproveitar para aplicar estes critérios de divisibilidade e fazer um brilharete junto de familiares e amigos. Por exemplo, pode virar-se de costas e pedir a um amigo que construa uma sequência de 5 cartas, utilizando cartas numeradas do Ás ao 5, pela ordem que bem entender; sem ver a sequência formada, a sua "intuição de mágico" dar-lhe-à a certeza de que o número é divisível por 3!