3 resultados para Argissolo amarelo
em Universidade dos Açores - Portugal
Resumo:
Neste artigo, veremos mais algumas curiosidades relacionadas com o número 7. (...) Na China e em outros países asiáticos, o 7 é um número com profundas raízes mitológicas. Segundo um conhecido ritual, na sétima noite do sétimo mês do calendário lunar, as mulheres que procuram um bom casamento devem olhar para o céu sete vezes. (...) No dia 7 de julho de 2007 foram reveladas no estádio da Luz, em Lisboa, as Novas Sete Maravilhas do Mundo: as Ruínas de Petra na Jordânia, a Grande Muralha da China, o Cristo Redentor no Rio de Janeiro, o Coliseu em Roma, o Taj Mahal na Índia, o Chichén Itzá (cidade Maia) no México e o Machu Picchu (cidade perdida dos Incas) no Peru. Nesse mesmo dia, foram reveladas as Sete Maravilhas de Portugal: Castelo de Guimarães, Castelo de Óbidos, Mosteiro de Alcobaça, Mosteiro da Batalha, Mosteiro dos Jerónimos, Palácio da Pena e Torre de Belém. Em 2010, seguiu-se o anúncio das Sete Maravilhas Naturais de Portugal, que decorreu nas Portas do Mar, em Ponta Delgada. Duas delas são dos Açores: Paisagem Vulcânica da Ilha do Pico e Lagoa das Sete Cidades (...) Destacam-se algumas propriedades numéricas do 7: é o quarto número primo (depois do 2, 3 e 5) e o terceiro número de Mersenne. (...) O número 7 está bem presente nas nossas vidas, muito mais do que à primeira vista podemos pensar: sete são as cores do arco-íris (vermelho, laranja, amarelo, verde, azul, anil, violeta) e as notas musicais (dó, ré, mi, fá, sol, lá, si); na literatura infanto-juvenil, temos “A Branca de Neve e os Sete Anões” e a coleção “Os Sete” de Enid Blyton; e há ainda que ter em conta as sete vidas de um gato, os sete anos de azar para quem quebrar um espelho e os sete tipos de frisos que podemos encontrar nas nossas calçadas e varandas. (...)
Resumo:
Ao retomar o tema do último artigo, lanço novamente ao leitor o desafio de se tornar num detetive à descoberta de simetrias nas peças de tecelagem da autoria de Joana Dias. (...) Encontramos frisos em todos os exemplos selecionados. Os frisos são figuras que apresentam simetrias de translação numa única direção. Isto significa que estamos na presença de um friso sempre que é possível identificar um motivo que se repete sucessivamente ao longo de uma faixa, estando as cópias do motivo igualmente espaçadas. A classificação do friso baseia-se na forma como esse motivo se repete, ou seja, na identificação de outras simetrias que o friso possa apresentar. (...) Vejamos o primeiro exemplo (figura 1): "Esta mala é uma peça recente trabalhada em fio de algodão e retalhos de tecido de algodão. Cada mala corresponde seguramente a mais de oito horas de trabalho. Aprendi em S. Jorge um ditado popular muito interessante: À casa da tecedeira sempre lhe faltou telha!" Ao analisar em pormenor uma das suas faixas (figura 2), o friso em causa apresenta simetrias de reflexão em espelho (tem um eixo de simetria horizontal, que coincide com a reta a amarelo; e, supondo que o motivo se repete indefinidamente para a esquerda e para a direita, um número infinito de eixos de simetria verticais). Se o leitor colocar um espelho perpendicular à página do jornal, de modo a que a borda do espelho assente na reta a amarelo (reta horizontal que divide o friso ao meio), verá que cada lado da imagem é, de facto, um reflexo do outro. O mesmo exercício pode ser feito assentando o espelho nos eixos de simetria verticais do friso. Este exemplo também apresenta simetrias de meia-volta: se virarmos o friso "de pernas ao ar", a sua configuração não se altera. (...)
Resumo:
Existem muitos exemplos interessantes de quadrados mágicos com histórias curiosas. Desde logo, se recuarmos no tempo e viajarmos até à antiga China. Segundo reza a lenda, por volta de 2200 a.C., o imperador Yu terá avistado uma tartaruga a sair do Rio Amarelo. Essa tartaruga apresentava um intrigante padrão formado por pontos pretos e brancos, que se assemelhava a uma grelha 3x3, preenchida com os primeiros 9 números naturais (1-9), dispostos de uma forma curiosa. (...) Outro aspeto curioso prende-se com o facto de os astrólogos da Renascença usarem quadrados mágicos associados aos diferentes planetas do Sistema Solar. (...) Outro aspeto que pode ser considerado nestes quadrados mágicos planetários é a soma de todos os números que compõem o quadrado, que se designa por soma mística (esta soma obtém-se multiplicando a constante mágica pelo número total de linhas do quadrado, isto porque ao adicionar os números de qualquer linha, obtém-se sempre a constante mágica). Por exemplo, o quadrado de Saturno tem soma mística igual a 15x3=45; o de Júpiter, 34x4=136; o de Marte, 65x5=325; e o do Sol, 111x6=666. Num quadrado planetário de ordem N, utilizam-se todos os números naturais, do 1 ao NxN, uma e uma só vez. Por este motivo, e tendo em conta as propriedades das progressões aritméticas, a soma mística de um quadrado planetário de ordem N pode ser obtida da fórmula NxN(NxN+1)/2, sendo a constante mágica igual a N(NxN+1)/2. (...)