3 resultados para biomechanical

em RCAAP - Repositório Científico de Acesso Aberto de Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eardrum separates the external ear from the middle ear and it is responsible to convert the acoustical energy into mechanical energy. It is divided by pars tensa and pars flaccida. The aim of this work is to analyze the susceptibility of the four quadrants of the pars tensa under negative pressure, to different lamina propria fibers distribution. The development of associated ear pathology, in particular the formation of retraction pockets, is also evaluated. To analyze these effects, a computational biomechanical model of the tympano-ossicular chain was constructed using computerized tomography images and based on the finite element method. Three fibers distributions in the eardrum middle layer were compared: case 1 (eardrum with a circular band of fibers surrounding all quadrants equally), case 2 (eardrum with a circular band of fibers that decreases in thickness in posterior quadrants), case 3 (eardrum without circular fibers in the posterior/superior quadrant). A static analysis was performed by applying approximately 3000Pa in the eardrum. The pars tensa of the eardrum was divided in four quadrants and the displacement of a central point of each quadrant analyzed. The largest displacements of the eardrum were obtained for the eardrum without circular fibers in the posterior/superior quadrant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eardrum separates the external ear from the middle ear and it is responsible to convert the acoustical energy into mechanical energy. It is divided by pars tensa and pars flaccida. The aim of this work is to analyze the susceptibility of the four quadrants of the pars tensa under negative pressure, to different lamina propria fibers distribution. The development of associated ear pathology, in particular the formation of retraction pockets, is also evaluated. To analyze these effects, a computational biomechanical model of the tympano-ossicular chain was constructed using computerized tomography images and based on the finite element method. Three fibers distributions in the eardrum middle layer were compared: case 1 (eardrum with a circular band of fibers surrounding all quadrants equally), case 2 (eardrum with a circular band of fibers that decreases in thickness in posterior quadrants), case 3 (eardrum without circular fibers in the posterior/superior quadrant). A static analysis was performed by applying approximately 3000Pa in the eardrum. The pars tensa of the eardrum was divided in four quadrants and the displacement of a central point of each quadrant analyzed. The largest displacements of the eardrum were obtained for the eardrum without circular fibers in the posterior/superior quadrant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The presence of body posture changes among patients with temporomandibular disorders (TMD) has been a controversial issue in the literature, in which it supporters point out the muscular origin as the main etiological factors, mainly associated with postural changes in head. Due to this controversy, it is pertinent to check whether this relationship exists on the most common etiology of TMD, the disk displacement, which translates a biomechanical internal disorder of the temporomandibular joint (TMJ). Objectives: Assess body posture changes in subjects with internal derangement of the TMJ when compared to subjects without this biomechanical dysfunction, characterize the patterns of the jaw movements and assess to the muscle activation during jaw movements. Methods: 21 subjects with TMJ disc displacement (DD) (test group) and 21 subjects without any TMD (control group) was assessed for body posture changes through evaluation of several body segments by posturography and also was evaluated the postural balance reactions through the center of mass during jaw movements using a balance platform. For the characterization of the jaw movement patterns it was done a kinematic analysis during jaw movements (active ROM and path of the jaw). For the muscle activation during jaw movements it was evaluated the masseter, sternocleidomastoid and spinae erector muscles by surface electromyography (EMG). Results Discussion: Both groups show forward head posture and extension of the cervical spine, not noticing any other significant body posture changes in subjects with DD, and if we had to see in detail, in general, subjects without TMD shows more body posture changes than subjects with DD. The pattern of jaw movements is similar in both groups, but in subjects with DD the closing movements are more instable than the opening movements, related to a less effective movement control to counteract the force of gravity and the disk displacement. The bilateral muscle activation during jaw movements is higher in subjects with DD, likely related to a less stable pattern of movement which leads in a higher muscle activation to guide the movement and ensure the best as possible articular stability. Conclusion: The disk displacement with reduction should be viewed as part of a set of signs and symptoms that require an accurate musculoskeletal and psychosocial assessment towards an earlier diagnosis for reduction and control of the functional limiting factors. In this direction, it seems that the relevant set of limiting signs and symptoms deserve a particular attention by health care practitioners involved in the assessment and treatment of TMD, in order to define effective therapeutic options.