2 resultados para Signalto Noise Ratio (SNR)

em RCAAP - Repositório Científico de Acesso Aberto de Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of the image of 18F-FDG PET/CT scans in overweight patients is commonly degraded. This study evaluates, retrospectively, the relation between SNR, weight and dose injected in 65 patients, with a range of weights from 35 to 120 kg, with scans performed using the Biograph mCT using a standardized protocol in the Nuclear Medicine Department at Radboud University Medical Centre in Nijmegen, The Netherlands. Five ROI’s were made in the liver, assumed to be an organ of homogenous metabolism, at the same location, in five consecutive slices of the PET/CT scans to obtain the mean uptake (signal) values and its standard deviation (noise). The ratio of both gave us the Signal-to- Noise Ratio in the liver. With the help of a spreadsheet, weight, height, SNR and Body Mass Index were calculated and graphs were designed in order to obtain the relation between these factors. The graphs showed that SNR decreases as the body weight and/or BMI increased and also showed that, even though the dose injected increased, the SNR also decreased. This is due to the fact that heavier patients receive higher dose and, as reported, heavier patients have less SNR. These findings suggest that the quality of the images, measured by SNR, that were acquired in heavier patients are worst than thinner patients, even though higher FDG doses are given. With all this taken in consideration, it was necessary to make a new formula to calculate a new dose to give to patients and having a good and constant SNR in every patient. Through mathematic calculations, it was possible to reach to two new equations (power and exponential), which would lead to a SNR from a scan made with a specific reference weight (86 kg was the considered one) which was independent of body mass. The study implies that with these new formulas, patients heavier than the reference weight will receive higher doses and lighter patients will receive less doses. With the median being 86 kg, the new dose and new SNR was calculated and concluded that the quality of the image remains almost constant as the weight increases and the quantity of the necessary FDG remains almost the same, without increasing the costs for the total amount of FDG used in all these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Long-term exposure to infrasound and low frequency noise (ILFN <500 Hz, including infrasound) can lead to the development of vibroacoustic disease (VAD). VAD is a systemic pathology characterized by the abnormal growth of extracellular matrices in the absence of inflammatory processes, namely of collagen and elastin, both of which are abundant in the basement membrane zone of the vocal folds. ILFN-exposed workers include pilots, cabin crewmembers, restaurant workers, ship machinists and, in previous studies, even though they did not present vocal symptoms, ILFN-exposed workers had significant different voice acoustic patterns (perturbation and temporal measures) when compared with normative population. Study Aims: The present study investigates the effects of age and years of occupational ILFN-exposure on voice acoustic parameters of 37 cabin crewmembers: 12 males and 25 females. Specifically, the goals of this study are to: 1) Verify if acoustic parameters change over the age and years of ILFN-exposure and 2) Determine if there is any interaction between age and years of ILFNexposure on voice acoustic parameters of crewmembers. Materials and Methods: Spoken phonatory tasks were recorded with a C420III PP AKG head-worn microphone and a DA-P1 Tascam DAT. Acoustic analyses were performed using KayPENTAX Computer Speech Lab and Multi-Dimensional Voice Program. Acoustic parameters included speaking fundamental frequency, perturbation measures (jitter, shimmer and harmonicto- noise ratio), temporal measures (maximum phonation time and s/z ratio) and voice tremor frequency. Results: One-way ANOVA analysis revealed that as the number of ILFN-exposure years increased male cabin crewmembers presented significant different shimmer values of /i/ as well as tremor frequency of /u/. Females presented significantly different jitter % of /i, a, O/ (p <0.05). Lastly, Two-way ANOVA analysis revealed that for females, there was a significant interaction between age and occupational ILFN-exposure for voice acoustic parameters, namely for jitter’s mean for /a, O/ and shimmer’s (%) mean for /a, i/ (p <0.05). Discussion and Conclusion: These perturbation measure patterns may be indicative of histological changes within the vocal folds as a result of ILFN-exposure. The results of this study suggest that voice acoustic analysis may be an important tool for confirming ILFN-induced health effects.