3 resultados para sperm DNA damage

em Instituto Nacional de Saúde de Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute physical exercise is associated with increased oxygen consumption, which could result in an increased formation of reactive oxygen species (ROS). ROS can react with several organic structures, namely DNA, causing strand breaks and a variety of modified bases in DNA. Physical exercise training seems to decrease the incidence of oxidative stress-associated diseases, and is considered as a key component of a healthy lifestyle. This is a result of exercise-induced adaptation, which has been associated with the possible increase in antioxidant activity and in oxidative damage repair enzymes, leading to an improved physiological function and enhanced resistance to oxidative stress (Radak et al. 2008). Human 8-oxoguanine DNA glycosylase 1 (hOGG1) is involved in the base excision repair (BER) pathway and encodes an enzyme responsible for removing the most common product of oxidative damage in DNA, 8-hydroxyguanine (8-OH-G). The genetic polymorphism of hOGG1 at codon 326 results in a serine (Ser) to cysteine (Cys) amino acid substitution (Ser326Cys). It has been suggested that the carriers of at least one hOGG1Cys variant allele exhibit lower 8-OH-G excision activity than the wild-type (Wilson et al. 2011). The aim of this study was to investigate the possible influence of hOGG1 Ser326Cys polymorphism on DNA damage and repair activity in response to 16 weeks of combined physical exercise training, in thirty healthy Caucasian men. Comet assay was carried out using peripheral blood lymphocytes and enabled the evaluation of DNA damage, both strand breaks and FPG-sensitive sites, and DNA repair activity. Genotypes were determined by PCR-RFLP analysis. The subjects with Ser/Ser genotype were considered as wild-type group (n=20), Ser/Cys and Cys/Cys genotype were analyzed together as mutant group (n=10). Regarding differences between pre and post-training in the wild-type group, the results showed a significant decrease in DNA strand breaks (DNA SBs) (p=0.002) and also in FPG-sensitive sites (p=0.017). No significant differences were observed in weight (p=0.389) and in lipid peroxidation (MDA) (p=0.102). A significant increase in total antioxidant capacity (evaluated by ABTS) was observed (p=0.010). Regarding mutant group, the results showed a significant decrease in DNA SBs (p=0.008) and in weight (p=0.028). No significant differences were observed in FPG-sensitive sites (p=0.916), in ABTS (p=0.074) and in MDA (p=0.086). No significant changes in DNA repair activity were observed in both genotype groups. This preliminary study suggests the possibility of different responses in DNA damage to physical exercise training, considering the hOGG1 Ser326Cys polymorphism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: Inflammation has long been regarded as a major contributor to cellular oxidative damage and to be involved in the promotion of carcinogenesis. Methods: We aimed to investigate the oxidative damage in inflammatory bowel disease [IBD] patients through a case–control and prospective study involving 344 IBD patients and 294 healthy controls. DNA damage and oxidative DNA damage were measured by comet assay techniques, and oxidative stress by plasmatic lipid peroxidation, protein carbonyls, and total antioxidant capacity. Results: Higher DNA damage [p < 0.001] was found both in Crohn’s disease [CD] (9.7 arbitrary units [AU]; interquartile range [IQR]: 6.2–14.0) and ulcerative colitis [UC] [7.1 AU; IQR: 4.4–11.7], when compared with controls [5.4 AU; IQR: 3.8–6.8], and this was also the case with oxidative DNA damage [p < 0.001] [CD: 3.6 AU; IQR: 1.8–6.8; UC: 4.6 AU; IQR: 2.4–8.1], when compared with controls: 2.3 AU; IQR: 1.2–4.2]. Stratifying patients into groups according to therapy (5-aminosalicylic acid [5-ASA], azathioprine, anti-TNF, and combined therapy [azathioprine and anti-TNF]) revealed significant between-group differences in the level of DNA damage, both in CD and UC, with the combined therapy exhibiting the highest DNA damage levels [11.6 AU; IQR: 9.5–14.3, and 12.4 AU; IQR: 10.6–15.0, respectively]. Among CD patients, disease behaviour [B1 and B2], and age at diagnosis over 40 years [A3] stand as risk factors for DNA damage. For UC patients, the risk factors found for DNA damage were disease activity, treatment, age at diagnosis under 40 years [A1 + A2] and disease locations [E2 and E3]. Conclusions: In IBD there is an increase in DNA damage, and treatment, age at diagnosis and inflammatory burden seem to be risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this pilot study was to investigate the possible influence of genetic polymorphisms of the hOGG1 (Ser326Cys) gene in DNA damage and repair activity by 8-oxoguanine DNA glycosylase 1 (OGG1 enzyme) in response to 16 weeks of combined physical exercise training. Thirty-two healthy Caucasian men (40-74 years old) were enrolled in this study. All the subjects were submitted to a training of 16 weeks of combined physical exercise. The subjects with Ser/Ser genotype were considered as wild-type group (WTG), and Ser/Cys and Cys/Cys genotype were analysed together as mutant group (MG). We used comet assay in conjunction with formamidopyrimidine DNA glycoslyase (FPG) to analyse both strand breaks and FPG-sensitive sites. DNA repair activity were also analysed with the comet assay technique. Our results showed no differences between DNA damage (both strand breaks and FPG-sensitive sites) and repair activity (OGG1) between genotype groups (in the pre-training condition). Regarding the possible influence of genotype in the response to 16 weeks of physical exercise training, the results revealed a decrease in DNA strand breaks in both groups, a decrease in FPG-sensitive sites and an increase in total antioxidant capacity in the WTG, but no changes were found in MG. No significant changes in DNA repair activity was observed in both genotype groups with physical exercise training. This preliminary study suggests the possibility of different responses in DNA damage to the physical exercise training, considering the hOGG1 Ser326Cys polymorphism.