2 resultados para obligation to individually identify documents in bundles
em Instituto Nacional de Saúde de Portugal
Resumo:
Aims: Familial hypercholesterolemia (FH) is a genetic disorder of lipid metabolism, clinically characterised by high levels of low-density lipoprotein cholesterol (LDL-C) that leads to cholesterol accumulation in tendons and arteries, premature atherosclerosis and increased risk of premature coronary heart disease. In 1999, the Portuguese FH Study was established at the National Institute of Health to identify the genetic cause of hypercholesterolemia in individuals with a clinical diagnosis of FH and to perform an epidemiologic study to determine the prevalence and distribution of FH in Portugal. In the last 16 years, a genetic defect was identified in 749 patients, representing 3. 7 % of the cases estimated to exist in Portugal. Index patients were included in this study using the Simon Broome (SB) criteria. However, there are different FH clinical criteria to diagnose index cases. Since there are no clinical criteria to identify relatives with FH, the aim of this work was to investigate if a diagnostic tool based on population specific 95 th percentile improves the clinical identification of Portuguese FH patients comparing with SB criteria.
Resumo:
Environmental tobacco smoke (ETS) is recognized as an occupational hazard in the hospitality industry. Although Portuguese legislation banned smoking in most indoor public spaces, it is still allowed in some restaurants/bars, representing a potential risk to the workers’ health, particularly for chronic respiratory diseases. The aims of this work were to characterize biomarkers of early genetic effects and to disclose proteomic signatures associated to occupational exposure to ETS and with potential to predict respiratory diseases development. A detailed lifestyle survey and clinical evaluation (including spirometry) were performed in 81 workers from Lisbon restaurants. ETS exposure was assessed through the level of PM 2.5 in indoor air and the urinary level of cotinine. The plasma samples were immunodepleted and analysed by 2D-SDSPAGE followed by in-gel digestion and LC-MS/MS. DNA lesions and chromosome damage were analysed innlymphocytes and in exfoliated buccal cells from 19 cigarette smokers, 29 involuntary smokers, and 33 non-smokers not exposed to tobacco smoke. Also, the DNA repair capacity was evaluated using an ex vivo challenge comet assay with an alkylating agent (EMS). All workers were considered healthy and recorded normal lung function. Interestingly, following 2D-DIGE-MS (MALDI-TOF/TOF), 61 plasma proteins were found differentially expressed in ETS-exposed subjects, including 38 involved in metabolism, acute-phase respiratory inflammation, and immune or vascular functions. On the other hand, the involuntary smokers showed neither an increased level of DNA/chromosome damage on lymphocytes nor an increased number of micronuclei in buccal cells, when compared to non-exposed non-smokers. Noteworthy, lymphocytes challenge with EMS resulted in a significantly lower level of DNA breaks in ETS-exposed as compared to non-exposed workers (P<0.0001) suggestive of an adaptive response elicited by the previous exposure to low levels of ETS. Overall, changes in proteome may be promising early biomarkers of exposure to ETS. Likewise, alterations of the DNA repair competence observed upon ETS exposure deserves to be further understood. Work supported by Fundação Calouste Gulbenkian, ACSS and FCT/Polyannual Funding Program.