3 resultados para colitis
em Instituto Nacional de Saúde de Portugal
Resumo:
Background and aims: Inflammation has long been regarded as a major contributor to cellular oxidative damage and to be involved in the promotion of carcinogenesis. Methods: We aimed to investigate the oxidative damage in inflammatory bowel disease [IBD] patients through a case–control and prospective study involving 344 IBD patients and 294 healthy controls. DNA damage and oxidative DNA damage were measured by comet assay techniques, and oxidative stress by plasmatic lipid peroxidation, protein carbonyls, and total antioxidant capacity. Results: Higher DNA damage [p < 0.001] was found both in Crohn’s disease [CD] (9.7 arbitrary units [AU]; interquartile range [IQR]: 6.2–14.0) and ulcerative colitis [UC] [7.1 AU; IQR: 4.4–11.7], when compared with controls [5.4 AU; IQR: 3.8–6.8], and this was also the case with oxidative DNA damage [p < 0.001] [CD: 3.6 AU; IQR: 1.8–6.8; UC: 4.6 AU; IQR: 2.4–8.1], when compared with controls: 2.3 AU; IQR: 1.2–4.2]. Stratifying patients into groups according to therapy (5-aminosalicylic acid [5-ASA], azathioprine, anti-TNF, and combined therapy [azathioprine and anti-TNF]) revealed significant between-group differences in the level of DNA damage, both in CD and UC, with the combined therapy exhibiting the highest DNA damage levels [11.6 AU; IQR: 9.5–14.3, and 12.4 AU; IQR: 10.6–15.0, respectively]. Among CD patients, disease behaviour [B1 and B2], and age at diagnosis over 40 years [A3] stand as risk factors for DNA damage. For UC patients, the risk factors found for DNA damage were disease activity, treatment, age at diagnosis under 40 years [A1 + A2] and disease locations [E2 and E3]. Conclusions: In IBD there is an increase in DNA damage, and treatment, age at diagnosis and inflammatory burden seem to be risk factors.
Resumo:
Abstract: The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene, which are sufficient for initiation of hyperplastic growth but not for tumor progression. A previous analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant BRAF and both events proved to cooperate in tumor cell survival. Patients with inflamed human colonic mucosa also have increased expression of Rac1b as well as mice with experimentally induced colitis. The increase of Rac1b in the mouse model was specifically prevented by the nonsteroidal anti-inflammatory drug ibuprofen. Purpose: The objective of our study is to understand the molecular regulation of Rac1b alternative splicing event and how it contributes to tumorigenesis. Experimental description: HT29 colorectal cell line was used as model to test several signaling pathways after 48h of treatment with ibuprofen. For this we analyzed the proteins of interest by Western Blot and the transcript levels by RT-PCR. Results: Mechanistic studies in cultured HT29 colorectal tumor cells revealed that ibuprofen inhibited Rac1b expression in a cyclooxygenase inhibition–independent manner and targets directly the alternative splicing event. Here, we provide evidence that ibuprofen leads to a decrease in expression of SRSF1, a splicing factor that we previously identified to promote Rac1b alternative splicing. Together, our results suggest that stromal cues, namely, inflammation, can trigger changes in Rac1b expression in the colon and identify ibuprofen as a highly specific and efficient inhibitor of Rac1b overexpression in colorectal tumors. Conclusions: Our data identify an additional cyclooxygenase–independent action of ibuprofen and suggest it may be beneficial in the treatment of patients with the subtype of BRAF-mutated serrated colorectal tumors.
Resumo:
Introduction: The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene, which are sufficient for initiation of hyperplastic growth but not for tumor progression. A previous analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant BRAF and both events proved to cooperate in tumor cell survival. Patients with inflamed human colonic mucosa also have increased expression of Rac1b as well as mice with experimentally induced colitis. The increase of Rac1b in the mouse model was specifically prevented by the nonsteroidal anti-inflammatory drug ibuprofen.