2 resultados para SPOILAGE

em Instituto Nacional de Saúde de Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the conference is to bring together academia and industry to discuss the safety of food packaging as well as the development of new food packaging materials, including active, intelligent and nano concepts. Bio-based materials will be also discussed due to be a growing area of food packaging. Topics: Food Safety & Quality (Physical and chemical hazards: measurement and assessment; Biological hazards: risk and prevention; Mathematical modelling of risk assessment; Evaluation of food spoilage, food quality and shelf life; Food packaging laws and regulations; Food package interactions: migration measurement methods, models and food safety risk assessment; Food Packaging innovation (Active and intelligent packaging; Nano-packaging; New packaging materials and material development; Bio based and edible packaging; Food package testing; Sustainable food contact materials; Recycling and Life Cycle Assessment).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intestinal mucosa is the first biological barrier encountered by natural toxins, and could possibly be exposed to high amounts of dietary mycotoxins. Patulin (PAT), a mycotoxin produced by Penicillium spp. during fruit spoilage, is one of the best known enteropathogenic mycotoxins able to alter functions of the intestine (Maresca et al., 2008). This study evaluated the effects of PAT on barrier function of the gut mucosa utilizing the intestinal epithelial cell model Caco-2, and scrutinized immunomodulatory effects using human peripheral blood mononuclear cells (PBMC) and human blood monocyte-derived dendritic cells (moDCs) as test systems. PAT exposure reduced Caco-2 cell viability at concentrations above 12 mM. As expected, the integrity of a polarized Caco-2 monolayer was affected by PAT exposure, as demonstrated by a decrease in TER values, becoming more pronounced at 50 mM. No effects were detected on the expression levels of the tight junction proteins occludin, claudin-1 and claudin-3 at 50 mM. However, the expression of zonula occludens-1 (ZO-1) and myosin light chain 2 (MLC2) declined. Also, levels of phospho-MLC2 (p-MLC2) increased after 24 h of exposure to 50 mM of PAT. T cell proliferation was highly sensitive to PAT with major effects for concentrations above 10 nM of PAT. The same conditions did not affect the maturation of moDC. PAT causes a reduction in Caco-2 barrier function mainly by perturbation of ZO-1 levels and the phosphorylation of MLC. Low doses of PAT strongly inhibited T cell proliferation induced by a polyclonal activator, but had no effect on the maturation of moDC. These results provide new information that strengthens the concept that the epithelium and immune cells of the intestinal mucosa are important targets for the toxic effects of food contaminants like mycotoxins