5 resultados para PT Portugal
em Instituto Nacional de Saúde de Portugal
Resumo:
This work was focused on a multi-purpose estuarine environment (river Sado estuary, SW Portugal) around which a number of activities (e.g., fishing, farming, heavy industry, tourism and recreational activities) coexist with urban centres with a total of about 200 000 inhabitants. Based on previous knowledge of the hazardous chemicals within the ecosystem and their potential toxicity to benthic species, this project intended to evaluate the impact of estuarine contaminants on the human and ecosystem health. An integrative methodology based on epidemiological, analytical and biological data and comprising several lines of evidence, namely, human contamination pathways, human health effects, consumption of local produce, estuarine sediments, wells and soils contamination, effects on commercial benthic organisms, and genotoxic potential of sediments, was used. The epidemiological survey confirmed the occurrence of direct and indirect (through food chain) exposure of the local population to estuarine contaminants. Furthermore, the complex mixture of contaminants (e.g., metals, pesticides, polycyclic aromatic hydrocarbons) trapped in the estuary sediments was toxic to human liver cells exposed in vitro, causing cell death, oxidative stress and genotoxic effects that might constitute a risk factor for the development of chronic-degenerative diseases, on the long term. Finally, the integration of data from several endpoints indicated that the estuary is moderately impacted by toxicants that affect also the aquatic biota. Nevertheless, the human health risk can only be correctly assessed through a biomonitoring study including the quantification of contaminants (or metabolites) in biological fluids as well as biomarkers of early biological effects (e.g., biochemical, genetic and omics-based endpoints) and genetic susceptibility in the target population. Data should be supported by a detailed survey to assess the impact of the contaminated seafood and local farm products consumption on human health and, particularly, on metabolic diseases or cancer development.
Resumo:
Aims: Familial hypercholesterolemia (FH) is a genetic disorder of lipid metabolism, clinically characterised by high levels of low-density lipoprotein cholesterol (LDL-C) that leads to cholesterol accumulation in tendons and arteries, premature atherosclerosis and increased risk of premature coronary heart disease. In 1999, the Portuguese FH Study was established at the National Institute of Health to identify the genetic cause of hypercholesterolemia in individuals with a clinical diagnosis of FH and to perform an epidemiologic study to determine the prevalence and distribution of FH in Portugal. In the last 16 years, a genetic defect was identified in 749 patients, representing 3. 7 % of the cases estimated to exist in Portugal. Index patients were included in this study using the Simon Broome (SB) criteria. However, there are different FH clinical criteria to diagnose index cases. Since there are no clinical criteria to identify relatives with FH, the aim of this work was to investigate if a diagnostic tool based on population specific 95 th percentile improves the clinical identification of Portuguese FH patients comparing with SB criteria.
Resumo:
There is a growing concern within public health about mycotoxin involvement in human diseases, namely those related to children. The MycoMix project (2012-2015), funded by the Portuguese Foundation for Science and Technology, gathered a multidisciplinary team aiming at answering several questions: 1) Are Portuguese children exposed daily to one or several mycotoxins through food? 2) Can this co-exposure affect children´s health? and 3) Are there interaction effect between mycotoxins? Mycomix results revealed that Portuguese children (< 3 years old, n=103) are exposed to multiple mycotoxins through food consumption. Cumulative risk assessment results revealed a potential health concern for the high percentiles of intake, specially for aflatoxins which are carcinogenic compounds. This fact assumes particular importance considering the interactive effects found in in vitro bioassays. These results highlight the need for a more accurate approach to assess the human exposure to mycotoxins6. Within the Mycomix project the assessment of mycotoxin exposure was based on calculations combining mycotoxin data in food with population data on food consumption. This approach does not consider some aspects as the inter-individual metabolism variation, the exposure through sources other than food and the heterogeneous distribution of mycotoxins in food. Exposure assessment of mycotoxins in Portuguese population through biomarkers is still missing and further studies are urgent to be developed. The European Human Biomonitoring Initiative (EHBMI), a proposal within the European Joint Programme, aims to advance the understanding of the extent of exposure to environmental chemicals across Europe and the impact on human health, by gathering national expertise in human biomonitoring domain. At national level Mycomix project uncovered the potential health risk of exposure of Portuguese children to multiple mycotoxins. The risk assessment expertise acquired within Mycomix, namely in analysis and toxicology of chemical mixtures, will be brought together as a contribute to EHBMI objectives.
Resumo:
The main aim of the research project "On the Contribution of Schools to Children's Overall Indoor Air Exposure" is to study associations between adverse health effects, namely, allergy, asthma, and respiratory symptoms, and indoor air pollutants to which children are exposed to in primary schools and homes. Specifically, this investigation reports on the design of the study and methods used for data collection within the research project and discusses factors that need to be considered when designing such a study. Further, preliminary findings concerning descriptors of selected characteristics in schools and homes, the study population, and clinical examination are presented. The research project was designed in two phases. In the first phase, 20 public primary schools were selected and a detailed inspection and indoor air quality (IAQ) measurements including volatile organic compounds (VOC), aldehydes, particulate matter (PM2.5, PM10), carbon dioxide (CO2), carbon monoxide (CO), bacteria, fungi, temperature, and relative humidity were conducted. A questionnaire survey of 1600 children of ages 8-9 years was undertaken and a lung function test, exhaled nitric oxide (eNO), and tear film stability testing were performed. The questionnaire focused on children's health and on the environment in their school and homes. One thousand and ninety-nine questionnaires were returned. In the second phase, a subsample of 68 children was enrolled for further studies, including a walk-through inspection and checklist and an extensive set of IAQ measurements in their homes. The acquired data are relevant to assess children's environmental exposures and health status.
Resumo:
Children spend a large part of their time at schools, which might be reflected as chronic exposure. Ultrafine particles (UFP) are generally associated with a more severe toxicity compared to fine and coarse particles, due to their ability to penetrate cell membranes. In addition, children tend to be more susceptible to UFP-mediated toxicity compared to adults, due to various factors including undeveloped immune and respiratory systems and inhalation rates. Thus, the purpose of this study was to determine indoor UFP number concentrations in Portuguese primary schools. Ultrafine particles were sampled between January and March 2014 in 10 public primary schools (35 classrooms) located in Porto, Portugal. Overall, the average indoor UFP number concentrations were not significantly different from outdoor concentrations (8.69 × 10(3) vs. 9.25 × 10(3) pt/cm(3), respectively; considering 6.5 h of indoor occupancy). Classrooms with distinct characteristics showed different trends of indoor UFP concentrations. The levels of carbon dioxide were negatively correlated with indoor UFP concentrations. Occupational density was significantly and positively correlated with UFP concentrations. Although the obtained results need to be interpreted with caution since there are no guidelines for UFP levels, special attention needs to be given to source control strategies in order to reduce major particle emissions and ensure good indoor air quality.