2 resultados para OVERLOAD
em Instituto Nacional de Saúde de Portugal
Resumo:
Objective: In Southern European countries up to one-third of the patients with hereditary hemochromatosis (HH) do not present the common HFE risk genotype. In order to investigate the molecular basis of these cases we have designed a gene panel for rapid and simultaneous analysis of 6 HH-related genes (HFE, TFR2, HJV, HAMP, SLC40A1 and FTL) by next-generation sequencing (NGS). Materials and Methods: Eighty-eight iron overload Portuguese patients, negative for the common HFE mutations, were analysed. A TruSeq Custom Amplicon kit (TSCA, by Illumina) was designed in order to generate 97 amplicons covering exons, intron/exon junctions and UTRs of the mentioned genes with a cumulative target sequence of 12115bp. Amplicons were sequenced in the MiSeq instrument (IIlumina) using 250bp paired-end reads. Sequences were aligned against human genome reference hg19 using alignment and variant caller algorithms in the MiSeq reporter software. Novel variants were validated by Sanger sequencing and their pathogenic significance were assessed by in silico studies. Results: We found a total of 55 different genetic variants. These include novel pathogenic missense and splicing variants (in HFE and TFR2), a very rare variant in IRE of FTL, a variant that originates a novel translation initiation codon in the HAMP gene, among others. Conclusion: The merging of TSCA methodology and NGS technology appears to be an appropriate tool for simultaneous and fast analysis of HH-related genes in a large number of samples. However, establishing the clinical relevance of NGS-detected variants for HH development remains a hard-working task, requiring further functional studies.
Resumo:
Introdution: Haemochromatosis-type IV, the ferroportin disease, is characterized by an autosomal-dominant transmission and early iron accumulation in macrophages. It is caused by mutations in the transmembrane iron exporter protein ferroportin1 (SLC40A1 gene). In form A (classic), ferroportin loss of function mutants are unable to export iron from cells leading to cellular iron accumulation with decreased availability of iron for serum transferrin (TS). We present a Portuguese rare clinical case of HH-IV. Materials and Methods: A 41-year-old woman with hyperferritinemia and normal TS. Causes of hyperferritinemia (inflammation, chronic alcohol consumption, metabolic syndrome, cell necrosis, non-alcoholic fatty liver disease and aceruloplasminemia) were assessed. Liver iron, evaluated by magnetic resonance imaging (MRI) was carried out. Screening for mutation in HFE and SCL40A1 genes were performed by Sanger sequencing. Baseline: Ferritin:708ng/ml; TS: 27%; MRI:85µmol/g; Hb:13,6g/dl. Therapy: weekly 450ml Therapeutic Phlebotomies (TP) until ferritin≤50ng/ml. Results: Hyperferritinemia comorbidities and common genetic mutations for haemochromatosis were negative. However, sequencing of the patient SLC40A1 gene has revealed the presence in heterozygosity of the variant c.238G>A; p.Gly80Ser. Due to low tolerance to TP, we adopted smaller phlebotomies every three weeks. Conclusion: This patient has a rare autosomal-dominant Ferroportin disease due to a mutated ferroportin which is predicted to be defective in iron cellular export. In agreement, she presents hyperferritinemia, with normal TS and liver iron overload. The genotype/phenotype association allowed to diagnosis this rare FD case. Although a mild form A, we decided to start TP. Her father also has been treated for iron overload.