2 resultados para Mutated HOXB4

em Instituto Nacional de Saúde de Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introdution: Haemochromatosis-type IV, the ferroportin disease, is characterized by an autosomal-dominant transmission and early iron accumulation in macrophages. It is caused by mutations in the transmembrane iron exporter protein ferroportin1 (SLC40A1 gene). In form A (classic), ferroportin loss of function mutants are unable to export iron from cells leading to cellular iron accumulation with decreased availability of iron for serum transferrin (TS). We present a Portuguese rare clinical case of HH-IV. Materials and Methods: A 41-year-old woman with hyperferritinemia and normal TS. Causes of hyperferritinemia (inflammation, chronic alcohol consumption, metabolic syndrome, cell necrosis, non-alcoholic fatty liver disease and aceruloplasminemia) were assessed. Liver iron, evaluated by magnetic resonance imaging (MRI) was carried out. Screening for mutation in HFE and SCL40A1 genes were performed by Sanger sequencing. Baseline: Ferritin:708ng/ml; TS: 27%; MRI:85µmol/g; Hb:13,6g/dl. Therapy: weekly 450ml Therapeutic Phlebotomies (TP) until ferritin≤50ng/ml. Results: Hyperferritinemia comorbidities and common genetic mutations for haemochromatosis were negative. However, sequencing of the patient SLC40A1 gene has revealed the presence in heterozygosity of the variant c.238G>A; p.Gly80Ser. Due to low tolerance to TP, we adopted smaller phlebotomies every three weeks. Conclusion: This patient has a rare autosomal-dominant Ferroportin disease due to a mutated ferroportin which is predicted to be defective in iron cellular export. In agreement, she presents hyperferritinemia, with normal TS and liver iron overload. The genotype/phenotype association allowed to diagnosis this rare FD case. Although a mild form A, we decided to start TP. Her father also has been treated for iron overload.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene, which are sufficient for initiation of hyperplastic growth but not for tumor progression. A previous analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant BRAF and both events proved to cooperate in tumor cell survival. Patients with inflamed human colonic mucosa also have increased expression of Rac1b as well as mice with experimentally induced colitis. The increase of Rac1b in the mouse model was specifically prevented by the nonsteroidal anti-inflammatory drug ibuprofen. Purpose: The objective of our study is to understand the molecular regulation of Rac1b alternative splicing event and how it contributes to tumorigenesis. Experimental description: HT29 colorectal cell line was used as model to test several signaling pathways after 48h of treatment with ibuprofen. For this we analyzed the proteins of interest by Western Blot and the transcript levels by RT-PCR. Results: Mechanistic studies in cultured HT29 colorectal tumor cells revealed that ibuprofen inhibited Rac1b expression in a cyclooxygenase inhibition–independent manner and targets directly the alternative splicing event. Here, we provide evidence that ibuprofen leads to a decrease in expression of SRSF1, a splicing factor that we previously identified to promote Rac1b alternative splicing. Together, our results suggest that stromal cues, namely, inflammation, can trigger changes in Rac1b expression in the colon and identify ibuprofen as a highly specific and efficient inhibitor of Rac1b overexpression in colorectal tumors. Conclusions: Our data identify an additional cyclooxygenase–independent action of ibuprofen and suggest it may be beneficial in the treatment of patients with the subtype of BRAF-mutated serrated colorectal tumors.